

HILTI HIT-HY 200-A V3 HILTI HIT-HY 200-R V3 INJECTION MORTAR

ETA-18/0978(26.09.2024)

English 2-24 Deutsch 2 -4

Polski 48-70

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-18/0978 of 26 September 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection system Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HAS-D

Post-installed fasteners in concrete under fatigue cyclic loading

Hilti Aktiengesellschaft Feldkircherstrasse 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Plants

23 pages including 3 annexes which form an integral part of this assessment

EAD 330250-00-0601, Edition 06/2021

ETA-18/0978 issued on 22 June 2023

DIBt | Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | FAX: +493078730-320 | Email: dibt@dibt.de | www.dibt.de Z174182.24

European Technical Assessment ETA-18/0978

English translation prepared by DIBt

Page 2 of 23 | 26 September 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 23 | 26 September 2024

Specific Part

1 Technical description of the product

The Injection System Hilti HIT-HY 200 with HAS-D is a torque controlled bonded anchor consisting of a cartridge with injection mortar Hilti HIT-HY 200-A, Hilti HIT-HY 200-R, Hilti HIT-HY 200-A V3 or Hilti HIT-HY 200-R V3, an anchor rod Hilti HAS-D, a Hilti sealing washer, a calotte nut and a locknut.

The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the anchorage ground (concrete).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic (static and quasi-static loading and seismic loading)	Performance	
Characteristic resistance to tension load (static and quasi-static loading)	see Annex B2, C1 and C2	
Characteristic resistance to shear load (static and quasi-static loading)	see Annex C2	
Displacements under short-term and long-term loading (static and quasi-static loading)	No performance	
Characteristic resistance and displacements for seismic performance categories C1 and C2	assessed on basis of EAD 330250-00-0601	

Essential characteristic (fatigue loading, Assessment method A: Continuous function of fatigue resistance)	Performance
Characteristic fatigue resistance under cyclic tension loading	
Characteristic steel fatigue resistance $\Delta N_{Rk,s,0,n}$ ($n = 1$ to $n = \infty$)	ana Annay
Characteristic concrete cone, pull-out and splitting fatigue resistance $\Delta N_{Rk,c,0,n}$ $\Delta N_{Rk,p,0,n}$ $\Delta N_{Rk,sp,0,n}$ $(n=1 \text{ to } n=\infty)$	see Annex C3 and C5

Page 4 of 23 | 26 September 2024

Essential characteristic (fatigue loading, Assessment method A: Continuous function of fatigue resistance)	Performance		
Characteristic fatigue resistance under cyclic shear loading			
Characteristic steel fatigue resistance $\Delta V_{Rk,s,0,n}$ ($n = 1$ to $n = \infty$)			
Characteristic concrete edge fatigue resistance $V_{Rk,c,0,n}$ $(n$ = 1 to n = ∞)	See Annex C4 and C5		
Characteristic concrete pry out fatigue resistance $\Delta V_{Rk,cp,0,n}$ (n = 1 to n = ∞)			
Characteristic fatigue resistance under cyclic combined tension and s	hear loading		
Characteristic steel fatigue resistance a_{sn} ($n = 1$ to $n = \infty$)	See Annex C5		
Load transfer factor for cyclic tension and shear loading			
Load transfer factor ψ_{FN}, ψ_{FV}	See Annex C3 to C5		

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document No. 330250-00-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

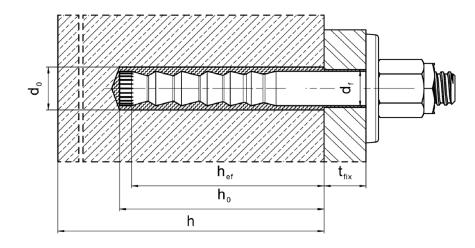
European Technical Assessment ETA-18/0978

English translation prepared by DIBt

Page 5 of 23 | 26 September 2024

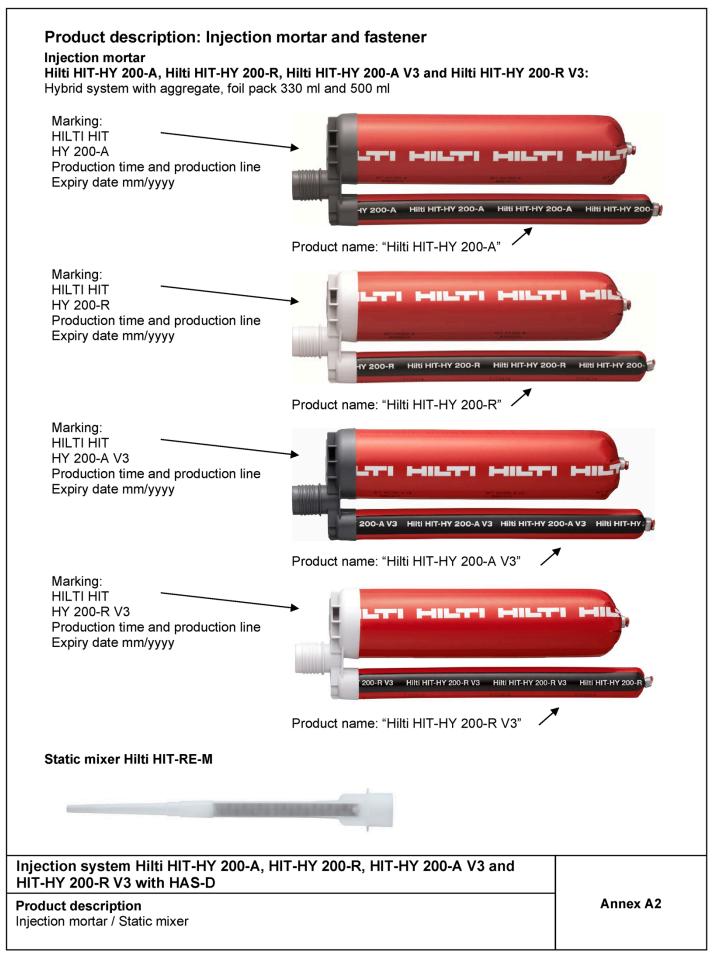
EAD 330499-00-0601 and EAD 330747-00-0601, February 2018

The following standards and documents are referred to in this European Technical Assessment:

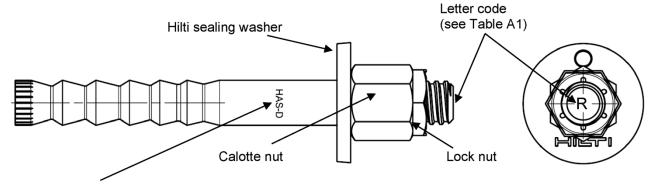

-	EN ISO 683-4:2018	Heat-treatable steels, alloy steels and free-cutting steels - Part 4: Free-cutting steels (ISO 683-4:2016)
-	EN 206:2013 + A2:2021	Concrete - Specification, performance, production and conformity
-	EN 1992-4:2018	Eurocode 2: Design of concrete structures - Part 4: Design of fastenings for use in concrete
-	EOTA TR 055	Design of fastenings based on EAD 330232-00-0601,

Issued in Berlin on 26 September 2024 by Deutsches Institut für Bautechnik

Beatrix Wittstock beglaubigt:
Head of Section Stiller


Installed condition

Injection system Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HAS-D


Product description Installed condition Annex A1

Marking:

HAS-D M..x L Fastener type as well as size and length of anchor rod

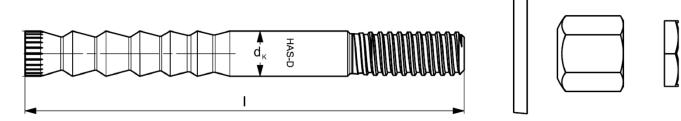
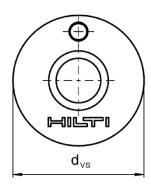


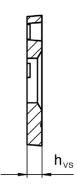
Table A1: Letter code for identification of anchor rod length¹⁾

Letter code			I	J	K	L	M	N	0	Р	Q	R
Length of anchor	≥	[mm]	139,7	152,4	165,1	177,8	190,5	203,2	215,9	228,6	241,3	254,0
rod l	<	[mm]	152,4	165,1	177,8	190,5	203,2	215,9	228,6	241,3	254,0	279,4

Letter code			S	Т	U	V	W	Х	Υ	Z	>Z
Length of anchor	≥	[mm]	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2	482,6
rod I	<	[mm]	304,8	330,2	355,6	381,0	406,4	431,8	457,2	482,6	

Anchor length in bold is standard item. For selection of other anchor lengths, check availability of the items.


Table A2: Dimensions


HAS-D			M12	M16	M20
Shaft diameter	\mathbf{d}_{k}	[mm]	12,5	16,5	22,0
Length of anchor rod I	≥	[mm]	143	180	242
	<u>≤</u>	[mm]	531	565	623
Calotte nut	SW	[mm]	18/19	24	30
Lock nut	SW	[mm]	19	24	30

Injection system Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HAS-D	
Product description Steel element	Annex A3

Hilti sealing washer to fill the annular gap between anchor and fixture

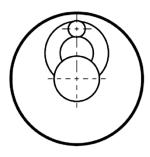


Table A3: Geometry of Hilti sealing washer

Size			M12	M16	M20
Diameter of sealing washer	$d_{\text{vs}} \\$	[mm]	44	52	60
Thickness of sealing washer	h _{vs}	[mm]	5	(3

Injection system Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HAS-D	
Product description Steel element	Annex A4

Table A4: Materials

Designation	Material
Anchor rod HAS-D	Steel acc. to EN ISO 683-4, galvanized and coated
Sealing washer	Steel, electroplated zinc coated ≥ 5 μm
Calotte nut	Steel, electroplated zinc coated ≥ 5 μm
Lock nut	Steel, electroplated zinc coated ≥ 5 μm

Injection system Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HAS-D

Product description Materials

Annex A5

Specifications of intended use

Anchorages subject to:

- · Static and quasi-static loading
- Fatigue cycling load.

Base material:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206.
- Strength classes C20/25 to C50/60 according to EN 206.
- Cracked and uncracked concrete.

Temperature in the base material:

- at installation
 - -10 °C to +40 °C for the standard variation of temperature after installation
- · in-service
 - -40 °C to +80 °C (max. long term temperature +50 °C and max. short term temperature +80 °C)

Use conditions (Environmental conditions):

Structures subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to
 reinforcement or to supports, etc.).
- Anchorages under fatigue cycling load are designed in accordance with: EN 1992-4 and EOTA Technical Report TR 061.

Installation:

- Concrete condition I1: dry or wet concrete (not in flooded holes).
- Drilling techniques:
 - · hammer drilling,
 - hammer drilling with hollow drill bit TE-CD, TE-YD,
 - diamond coring.
- Installation direction D3: downward, horizontal and upwards (e.g. overhead) installation.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HAS-D	
Intended use Specifications	Annex B1

Table B1: Installation parameters

HAS-D				M12	M16	M20
Diameter of ste	eel element	d	[mm]	12	16	20
Nominal diame	eter of drill bit	d ₀	[mm]	14	18	24
Effective embe	edment depth	h _{ef}	[mm]	100	125	170
Minimum drill h	nole depth	h ₀	[mm]	105	133	180
Minimum thick	ness of concrete member	h _{min}	[mm]	130	160 ¹⁾ / 170	2201) / 230
Pre-setting: Maximum diameter of clearance hole in the fixture		d _f	[mm]	14	18	24
Through-setting: Maximum diameter of clearance hole in the fixture		d _f	[mm]	16	20	26
		t _{fix,min} 2)	[mm]	12	16	20
Fixture thickne	SS	t _{fix,max}	[mm]		200	
Installation tord	que moment	Tinst	[Nm]	30	50	80
Uncracked	Minimum spacing	Smin,ucr	[mm]	80	60	80
concrete	Minimum edge distance	C _{min,ucr}	[mm]	75	80	110
Cracked	Minimum spacing	S _{min,cr}	[mm]	50	60	80
concrete	Minimum edge distance	C _{min,cr}	[mm]	70	80	110

The reverse side of the concrete member shall have no break-through after drilling.

 $t_{\text{fix,min,red}} = t_{\text{fix,min}} \cdot (0.5 + 0.5 \cdot \Delta V_{\text{Rk,s,0,red}} / \Delta V_{\text{Rk,s}})$

with $\Delta V_{Rk,s} = \Delta V_{Rk,s,0,n}$ for design method I (Table C4)

 $\Delta V_{Rk,s} = \Delta V_{Rk,s,0,\infty}$ for design method II (Table C6)

Table B2: Methods for application of torque

HAS-D		M12	M16	M20
Torque wrench		✓	✓	✓
Machine torqueing with Hilti SIW impact	SIW4 AT	✓	-	-
wrench and SI-AT adaptive torque module 1)	SIW6 AT	✓	✓	✓

¹⁾ Equivalent combination of Hilti SIW + SI-AT tool, compatible to this anchor type, may be used.

Injection system Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HAS-D	
Intended use Installation parameters	Annex B2

The minimum fixture thickness $t_{fix,min}$ can be replaced by a reduced minimum fixture thickness $t_{fix,min,red}$ if a reduced fatigue resistance in transverse direction $\Delta V_{Rk,s,0,red}$ is considered:

Table B3: Maximum working time and minimum curing time HIT-HY 200-A and HIT-HY 200-R

Tomporature in the		′ 200-A	HIT-HY 200-R	
Temperature in the base material T 1)	Maximum working time t _{work}	Minimum curing time t _{cure}	Maximum working time t _{work}	Minimum curing time t _{cure}
-10 °C to -5 °C	1,5 hours	7 hours	3 hours	20 hours
> -5 °C to 0 °C	50 min	4 hours	2 hours	8 hours
> 0 °C to 5 °C	25 min	2 hours	1 hour	4 hours
>5 °C to 10 °C	15 min	75 min	40 min	2,5 hours
>10 °C to 20 °C	7 min	45 min	15 min	1,5 hours
>20 °C to 30 °C	4 min	30 min	9 min	1 hour
>30 °C to 40 °C	3 min	30 min	6 min	1 hour

¹⁾ The minimum temperature of the foil pack is 0°C.

Table B4: Maximum working time and minimum curing time HIT-HY 200-A V3 and HIT-HY 200-R V3

HIT-HY 2		200-A V3	HIT-HY 200-R V3	
Temperature in the base material T 1)			Maximum working time t _{work}	Minimum curing time t _{cure}
-10 °C to -5 °C	1,5 hours	7 hours	3 hours	20 hours
> -5 °C to 0 °C	50 min	4 hours	1,5 hours	8 hours
> 0 °C to 5 °C	25 min	2 hours	45 min	4 hours
>5 °C to 10 °C	15 min	75 min	30 min	2,5 hours
>10 °C to 20 °C	7 min	45 min	15 min	1,5 hours
>20 °C to 30 °C	4 min	30 min	9 min	1 hour
>30 °C to 40 °C	3 min	30 min	6 min	1 hour

¹⁾ The minimum temperature of the foil pack is 0°C.

Injection system Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HAS-D	
Intended use Maximum working time and minimum curing time	Annex B3

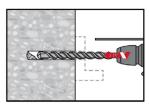
Table B5: Parameters of drilling, cleaning and setting tools

Fastener	Drill and clean				Installation
	Hammer drilling				
HAS-D		Hollow drill bit TE-CD, TE-YD ¹⁾	Diamond coring	Brush	Piston plug
			€ •		
Size	d₀ [mm]	d₀ [mm]	d₀ [mm]	HIT-RB	HIT-SZ
M12	14	14	14	14	14
M16	18	18	18	18	18
M20	24	24	24	24	24

With vacuum cleaner Hilti VC 10/20/40 (automatic filter cleaning activated, eco mode off) or a vacuum cleaner providing equivalent cleaning performance in combination with the specified Hilti hollow drill bit TE-CD or TE-YD.

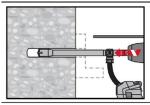
Table B6: Cleaning alternatives

Compressed Air Cleaning (CAC): Air nozzle with an orifice opening of minimum 3,5 mm in diameter. Automatic Cleaning (AC): Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system including vacuum cleaner.

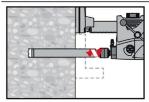

Injection system Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HAS-D	
Intended use Drilling, cleaning and setting tools	Annex B4

Installation instruction

Hole drilling


a) Hammer drilling

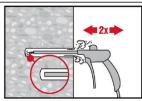
<u>Through-setting:</u> Drill hole through the clearance hole in the fixture to the required drilling depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.


<u>Pre-setting</u>: Drill hole to the required drilling depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

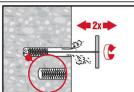
b) Hammer drilling with Hilti hollow drill bit (AC)

<u>Pre- / Through-setting:</u> Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit with vacuum attachment following the requirements given in Table B5. This drilling system removes the dust and cleans the drill hole during drilling when used in accordance with the user's manual. After drilling is completed, proceed to the "injection preparation" step in the installation instruction.

c) Diamond coring

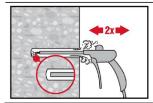

Diamond coring is permissible when suitable diamond core drilling machines and corresponding core bits are used.

<u>Through-setting:</u> Drill hole through the clearance hole in the fixture to the required drilling depth.


Pre-setting: Drill hole to the required embedment depth.

Drill hole cleaning: just before setting the fastener, the drill hole must be free of dust and debris.

a) Compressed Air Cleaning (CAC): for all drill hole diameters do and all drill hole depths ho.



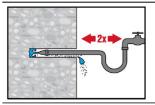
Blow 2 times from the back of the hole (if needed with nozzle extension) over the whole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust.

Brush 2 times with the specified brush (see Table B5) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.

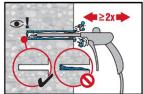
The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.

Blow again with compressed air 2 times until return air stream is free of noticeable dust.

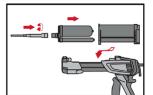
Injection system Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HAS-D


Intended use

Installation instructions

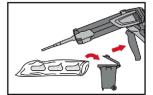

Annex B5

b) Cleaning of diamond cored holes: for all drill hole diameters do and all drill hole depths ho.



Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.

Blow 2 times from the back of the hole (if needed with nozzle extension) with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust and water.

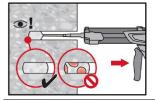

Injection preparation

Tightly attach Hilti mixing nozzle HIT-RE-M to foil pack manifold. Do not modify the mixing nozzle.

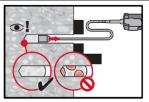
Observe the instruction for use of the dispenser.

Check foil pack holder for proper function. Insert foil pack into foil pack holder and put holder into dispenser.

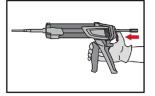
The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack an initial amount of adhesive must be discarded. Discarded quantities are:


2 strokes for 330 ml foil pack,

3 strokes for 500 ml foil pack


4 strokes for 500 ml foil pack \leq 5°C.

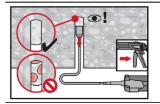
The minimum temperature of the foil pack is 0°C.


Inject adhesive from the back of the drill hole without forming air voids (through- and pre-setting).

Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull. The quantity of mortar should be selected so that the annular gap in the borehole is filled.

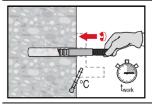
Injection is possible with the aid of extensions and piston plugs. Assemble HIT-RE-M mixer, extension(s) and appropriately sized piston plug (see Table B5). Insert piston plug to back of the hole and inject adhesive. During injection the piston plug will be naturally extruded out of the drill hole by the adhesive pressure. The quantity of mortar should be selected so that the annular gap in the borehole is filled.

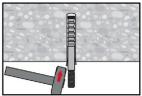
After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.


Injection system Hilti HIT-HY 200-A,	, HIT-HY 200-R, HIT-HY 200-A V3	and
HIT-HY 200-R V3 with HAS-D		

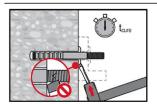
Intended use

Installation instructions

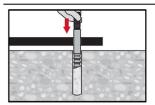

Annex B6



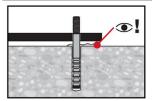
For overhead installation, the injection is only possible with the aid of extensions and piston plugs. Assemble HIT-RE-M mixer, extension(s) and appropriately sized piston plug (see Table B5). Insert piston plug to back of the hole and inject adhesive. During injection, the piston plug will be naturally extruded out of the drill hole by the adhesive pressure.


Setting the fastener

Before use, verify that the fastener is dry and free of oil and other contaminants. Set the fastener to the required embedment depth before working time t_{work} (see Table B3 and B4) has elapsed.

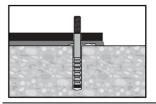


For overhead installation fix embedded parts with e.g. wedges.



After required curing time t_{cure} (see Table B3 and B4) remove excess mortar.

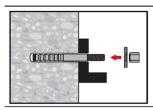
Setting the fastener with clearance between concrete and anchor plate (only if the fastener is loaded in axial direction)



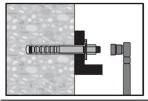
Set the fastener to the required embedment depth before working time t_{work} (see Table B3 and B4) has elapsed.

Check if mortar excess from the borehole.

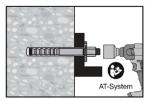
The annular gap in the fixture does not have to be filled.


After required curing time t_{cure} (see Table B3 and B4) backfill the anchor plate.

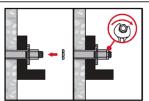
Injection system Hilti HIT-HY 200-A,	, HIT-HY 200-R, HIT-HY 200-A V3 and
HIT-HY 200-R V3 with HAS-D	


Intended use Installation instructions **Annex B7**

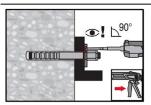
Final assembly with sealing washer



Orient round part of the calotte nut to the sealing washer and install.


a) Torque wrench

The required installation torque moment is given in Table B1.



b) Machine torqueing

Alternative torqueing is given in Table B2. Read the machine instruction manual from manufacture carefully

Apply the lock nut and tighten with a 1/4 to 1/2 turn.

Fill the annular gap between the anchor rod and fixture completely with Hilti injection mortar HIT-HY 200. The static mixer nozzle must be put orthogonally on the filling hole.

Follow the installation instructions supplied with the HIT-HY 200 foil pack. After required curing time t_{cure} (see Table B3 and B4), the fastener can be loaded.

Injection system Hilti HIT-HY 200-A,	HIT-HY 200-R, HIT-HY 200-A V3 and
HIT-HY 200-R V3 with HAS-D	

Intended use Installation instructions **Annex B8**

Table C1: Essential characteristics under static and quasi-static tension load in concrete

HAS-D				M12	M16	M20	
Effective	embedment depth	h _{ef}	[mm]	100	125	170	
Installatio	n safety factor	γinst	[-]	1,0			
Steel fail	ure						
Character	ristic resistance	N _{Rk,s}	[kN]		1)		
Pull-out f	ailure						
Characte	ristic bond resistance in uncrack	ed concret	e C20/25				
Temperat	ure range: 50 °C / 80 °C	$N_{Rk,p,ucr}$	[kN]	49,2	68,8	109	
Character	ristic resistance in cracked conci	ete C20/2	5				
Temperat	ure range: 50 °C / 80 °C	$N_{Rk,p,cr}$	[kN]	34,4	48,1	76,3	
			C30/37	1,22			
Increasing factor for N _{Rk,p} in concrete		Ψc	C40/50	1,41			
			C50/60	1,58			
Concrete	cone failure						
Factor for	uncracked concrete	k _{ucr,N}	[-]		11,0		
Factor for	cracked concrete	k cr,N	[-]	7,7			
Edge dist	ance	C _{cr,N}	[mm]	$1,5 \cdot h_{\text{ef}}$			
Spacing		Scr,N	[mm]	3,0 · h _{ef}			
Splitting f	failure for standard thickness o	f concrete	member				
Standard	thickness of concrete member	h	[mm]	200	250	340	
	Edge distance	C _{cr,sp}	[mm]		$1,5 \cdot h_{\text{ef}}$		
Case 1	Spacing	Scr,sp	[mm]	2,0 · c _{cr,sp}			
0430 1	Characteristic resistance in uncracked concrete C20/25	N^0 _{Rk,sp}	[kN]	40	50	109	
	Edge distance	C _{cr,sp}	[mm]	2,0	· h _{ef}	1,5 ⋅ h _{ef}	
Case 2	Spacing	S _{cr,sp}	[mm]		2,0 · C _{cr,sp}		
2400 2	Characteristic resistance in uncracked concrete C20/25	N^0 _{Rk,sp}	[kN]	49,2	68,8	109	

Injection system Hilti HIT-HY 200 with HAS-D	
Performances Essential characteristics under static and quasi-static load in concrete	Annex C1

Table C1 continued

Splitting failure for minimum thickness of concrete member								
Minimum	Minimum thickness of concrete member h _{min} [mm] 130 160 220							
Edge distance Spacing		Ccr,sp	[mm]	1,5 ⋅ h _{ef}				
		Scr,sp	[mm]	$2,0 \cdot c_{\text{cr,sp}}$				
	Characteristic resistance in uncracked concrete C20/25	N^0 Rk,sp	[kN]	30	40	75		
	Edge distance	C _{cr,sp}	[mm]	3,0	· h _{ef}	2,6 · h _{ef}		
Case 2	se 2 Spacing		[mm]	2,0 · C _{cr,sp}				
	Characteristic resistance in uncracked concrete C20/25	N^0 Rk,sp	[kN]	49,2	68,8	109		

No performance assessed based on EAD 330250-00-0601.

Table C2: Essential characteristics under static and quasi-static shear load in concrete

HAS-D			M12	M16	M20	
Installation safety factor	γinst	[-]	1,0			
Steel failure without lever arm						
Characteristic resistance	V^0 Rk,s	[kN]		1)		
Ductility factor	k ₇	1,0				
Steel failure with lever arm						
Characteristic resistance	M^0 Rk,s	[Nm]	1)			
Concrete pry-out failure						
Pry-out factor	k 8	[-]	2,0			
Concrete edge failure						
Effective length of fastener	lf	[mm]	100	125	170	
Effective outside diameter of fastener	d _{nom}	[mm]	14	18	24	
Partial factor	[-]	1,5				

No performance assessed based on EAD 330250-00-0601.

Injection system Hilti HIT-HY 200 with HAS-D	
Performances Essential characteristics under static and quasi-static load in concrete	Annex C2

²⁾ In absence of national regulations.

Table C3: Essential characteristics under tension fatigue load in concrete (design method I acc. to TR 061)

HAS-D			M12	M16	M20	
Steel failure						
Characteristic resistance		[kN]	Δ N _{Rk,s,0,n} 1)			
		= 1	53,9	83,4	112,1	
		≤ 10 ³	48,3	78,8	92,7	
Number of cycles		≤ 3·10³	45,9	77,1	89,9	
		≤ 10 ⁴	41,4	73,1	83,4	
	n	≤ 3·10 ⁴	35,9	66,3	73,8	
		≤ 10 ⁵	29,1	55,8	60,9	
		≤ 3·10 ⁵	24,2	45,5	50,7	
		≤ 10 ⁶	21,1	37,4	44,9	
		> 106	20,1	34,0	43,5	
Partial factor	γ Ms,N,fat	[-]	ac	c. to TR 061, Eq.	(3)	
Concrete failure			$\Delta N_{Rk,(c/p/s)}$	$\Delta N_{\text{Rk},(\text{c/p/sp}),0,\text{n}} = \eta_{\text{k,c},\text{N},\text{fat,n}} \cdot N_{\text{Rk},(\text{c/p/sp})}^{2)}$		
Effective embedment depth	h _{ef}	[mm]	100	125	170	
Reduction factor		[-]		ηκ,c,N,fat,n		
		= 1		1,0		
		≤ 10 ³		0,932		
		≤ 3·10³		0,893		
		≤ 10 ⁴		0,841		
Number of cycles	n	≤ 3·10 ⁴		0,794		
		≤ 10 ⁵		0,75		
		≤ 3·10 ⁵		0,722		
		≤ 10 ⁶		0,704		
		> 10 ⁶		0,693		
Partial factor	γMc,fat	[-]		1,5		
Load transfer factor for fastener group	ψғν	[-]		0,79		

Failure in cracked concrete due to combined pull-out / concrete cone failure ΔN_{Rk,p,0,n} in low-cycle loading range has been taken into account.

Injection system Hilti HIT-HY 200 with HAS-D	
Performances Essential characteristics under tension fatigue load in concrete (design method I acc. to TR 061)	Annex C3

 $^{^{2)}}$ $\;\;\;\;\;\;N_{Rk,(c/p/sp)}$ according to Table C1.

Table C4: Essential characteristics under shear fatigue load in concrete (design method I acc. to TR 061)

HAS-D			M12	M16	M20	
Steel failure						
Characteristic resistance		[kN]	$\Delta V_{Rk,s,0,n}$			
		= 1	34,0	63,0	149,0	
		≤ 10 ³	27,6	54,0	113,5	
		≤ 3·10³	23,8	47,2	91,6	
Number of cycles		≤ 10 ⁴	18,6	36,5	65,0	
	n	≤ 3·10 ⁴	14,1	26,2	43,9	
		≤ 10 ⁵	10,5	18,4	29	
		≤ 3·10 ⁵	8,9	15,6	23,2	
		≤ 10 ⁶	8,2	15,0	21,3	
		> 106	8,2	15,0	21,1	
Partial factor	γMs,V,fat	[-]	ac	c. to TR 061, Eq.	(3)	
Concrete failure			$\Delta V_{Rk,(c,c)}$	$\Delta V_{Rk,(c,cp),0,n} = \eta_{k,c,V,fat,n} \cdot V_{Rk,(c,cp)} $ 1)		
Effective length of fastener	lf	[mm]	100	125	170	
Effective outside diameter of fastener	d _{nom}	[mm]	14	18	24	
Reduction factor		[-]		ηk,c,V,fat,n		
		= 1		1,0		
		≤ 10 ³		0,799		
		≤ 3·10³		0,760		
		≤ 10 ⁴		0,725		
Number of cycles	n	≤ 3·10 ⁴		0,700		
		≤ 10 ⁵		0,68		
		≤ 3·10 ⁵		0,668		
		≤ 10 ⁶		0,660		
		> 10 ⁶		0,652		
Partial factor	γMc,fat	[-]		1,5		
Load transfer factor for fastener group	ΨΕΛ	[-]		0,81		

 $^{^{1)} \}quad V_{Rk,(c,cp)}$ according to Table C2

Injection system Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HAS-D	
Performances Essential characteristics under shear fatigue load in concrete (design method I acc. to TR 061)	Annex C4

Table C5: Essential characteristics under tension fatigue load in concrete (design method II acc. to TR 061)

HAS-D			M12	M16	M20
Steel failure					
Characteristic resistance	$\Delta N_{\text{Rk,s,0,}\infty}$	[kN]	20,1	34,0	43,5
Partial factor	γMs,N,fat	[-]		1,35	
Concrete failure			$\Delta N_{ ext{Rk,(c/p/sp}}$	$_{0,0,\infty} = \eta_{k,c,N,fat,\infty} \cdot $	N _{Rk(c/p/sp)} 1)
Effective embedment depth	h _{ef}	[mm]	100	125	170
Reduction factor	ηk,c,N,fat,∞	[-]		0,693	
Partial factor	γMc,fat	[-]		1,5	
Load transfer factor for fastener group	ΨFN	[-]		0,79	

 $^{^{1)} \}quad N_{\text{Rk}, (\text{c/p/sp})}$ according to Table C1.

Table C6: Essential characteristics under shear fatigue load in concrete (design method II acc. to TR 061)

HAS-D			M12	M16	M20	
Steel failure						
Characteristic resistance	$\Delta V_{\text{Rk,s,0,}\infty}$	[kN]	8,2	15,0	21,1	
Partial factor	γMs,V,fat	[-]		1,35		
Concrete failure			$\Delta V_{Rk,(c,cp),0,\infty} = \eta_{k,c,V,fat,\infty} \cdot V_{Rk,(c,cp)} $ 1)			
Effective length of fastener	lf	[mm]	100	125	170	
Effective outside diameter of fastener	d _{nom}	[mm]	14	18	24	
Reduction factor	ηk,c,V,fat,∞	[-]		0,652		
Partial factor	γMc,fat	[-]		1,5		
Load transfer factor for fastener group	Ψεν	[-]		0,81		

¹⁾ V_{Rk,(c,cp)} according to Table C2.

Table C7: Essential characteristics for combined fatigue load in concrete (design method I and II acc. to TR 061)

HAS-D			M12	M16	M20
Exponent for combined fatigue load	$lpha_{ extsf{sn}}$	[-]	1,5		
	αο	[-]		1,5	

Injection system Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HAS-D	
Performances Essential characteristics under tension, shear and combined fatigue load in concrete (design method I and II acc. to TR 061)	Annex C5

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-18/0978 vom 26. September 2024

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Injektionssystem Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 und HIT-HY 200-R V3 mit HAS-D

Nachträglich eingebaute Befestigungsmittel in Beton unter ermüdungsrelevanter zyklischer Beanspruchung

Hilti Aktiengesellschaft Feldkircherstrasse 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

23 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330250-00-0601, Edition 06/2021

ETA-18/0978 vom 22. Juni 2023

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z174181.24 8.06.01-123/24

Seite 2 von 23 | 26. September 2024

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Seite 3 von 23 | 26. September 2024

Besonderer Teil

1 Technische Beschreibung des Produkts

Das Injektionssystem Hilti HIT-HY 200 mit HAS-D ist ein kraftkontrolliert spreizender Verbunddübel, der aus einer Mörtelkartusche Hilti HIT-HY 200-A, Hilti HIT-HY 200-R, Hilti HIT-HY 200-A V3 oder Hilti HIT-HY 200-R V3, einer Ankerstange Hilti HAS-D, einer Hilti Verschlussscheibe, einer Kalottenmutter und einer Sicherungsmutter besteht.

Die Kraftübertragung erfolgt über die mechanische Verzahnung einzelner Konen im Injektionsmörtel und weiter über eine Kombination aus Halte- und Reibungskräften im Verankerungsgrund (Beton).

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angaben zur Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich ein Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal (statische und quasi-statische Beanspruchung und Erdbebenbeanspruchung)	Leistung		
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Lasten)	Siehe Anhang B2, C1 und C2		
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Lasten)	Siehe Anhang C2		
Verschiebungen für Kurzzeit- und Langzeitbelastung (statisch und quasi-statische Lasten)	Leistung auf Basis von EAD 330250-00-0601 nicht bewertet		
Charakteristischer Widerstand und Verschiebungen für die seismischen Leitungskategorien C1 und C2			

Wesentliches Merkmal (Ermüdungsrelevante Beanspruchung, Bewertungsmethode A: Kontinuierliche Funktion der Ermüdungsfestigkeit)	Leistung
Charakteristischer Ermüdungswiderstand unter zyklischer Zugbeanspr	uchung
Charakteristischer Stahlermüdungswiderstand $\Delta N_{Rk,s,0,n}$ $(n = 1 \text{ bis } n = \infty)$	Sigho Anhang
Charakteristischer Ermüdungswiderstand für Betonversagen, lokaler Betonausbruch, Herausziehen und Spalten $\Delta N_{Rk,c,0,n} \ \Delta N_{Rk,p,0,n} \ \Delta N_{Rk,sp,0,n} \ (n=1 \ \text{bis} \ n=\infty)$	Siehe Anhang C3 und C5

Seite 4 von 23 | 26. September 2024

Wesentliches Merkmal (Ermüdungsrelevante Beanspruchung, Bewertungsmethode A: Kontinuierliche Funktion der Ermüdungsfestigkeit)	Leistung	
Charakteristischer Ermüdungswiderstand unter zyklischer Querbeans	pruchung	
Charakteristischer Stahlermüdungswiderstand $\Delta V_{Rk,s,0,n}$ $(n=1 \text{ bis } n=\infty)$	Siehe Anhang C4 und C5	
Charakteristischer Ermüdungswiderstand für Betonkantenbruch $V_{Rk,c,0,n}$ $(n$ = 1 bis n = ∞)		
Charakteristischer Ermüdungswiderstand für Betonausbruch $\Delta V_{Rk,cp,0,n}$ $(n$ = 1 bis n = ∞)		
Charakteristischer Ermüdungswiderstand unter kombinierter zyklische Querbeanspruchung	er Zug- und	
Charakteristischer Stahlermüdungswiderstand a_{sn} (n = 1 bis n = ∞)	Siehe Anhang C5	
Lastumlagerungsfaktor für zyklische Zug- und Querbeanspruchung		
Lastumlagerungsfaktor ψ_{FN}, ψ_{FV}	Siehe Anhang C3 bis C5	

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330250-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

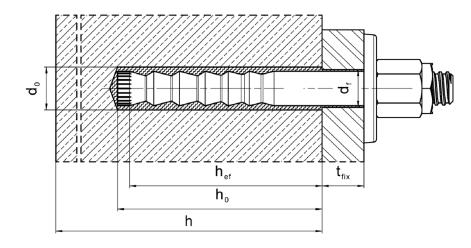
Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Seite 5 von 23 | 26. September 2024

Folgende Normen und Dokumente werden in dieser Europäischen Technischen Bewertung in Bezug genommen:


-	EN ISO 683-4:2018	Für eine Wärmebehandlung bestimmte Stähle, legierte Stähle und Automatenstähle - Teil 4: Automatenstähle (ISO 683-4:2016)
-	EN 206:2013 + A2:2021	Beton - Festlegung, Eigenschaften, Herstellung und Konformität
-	EN 1992-4:2018	Eurocode 2 - Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 4: Bemessung der Verankerung von Befestigungen in Beton
-	EOTA TR 055	Design of fastenings based on EAD 330232-00-0601, EAD 330499-00-0601 and EAD 330747-00-0601, February 2018

Ausgestellt in Berlin am 26. September 2024 vom Deutschen Institut für Bautechnik

Beatrix Wittstock Beglaubigt Referatsleiterin Stiller

Einbauzustand

Injektionssystem Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 und HIT-HY 200-R V3 mit HAS-D

Produktbeschreibung Einbauzustand

Anhang A1

Produktbeschreibung: Injektionsmörtel und Befestigungselement Injektionsmörtel

Hİlti HIT-HY 200-A, Hilti HIT-HY 200-R, Hilti HIT-HY 200-A V3 und Hilti HIT-HY 200-R V3:

Hybridsystem mit Zuschlag, Foliengebinde 330 ml und 500 ml

Kennzeichnung:

HILTI HIT HY 200-A

Produktionszeit und Produktionsline Verfallsdatum mm/yyyy

Produktname: "Hilti HIT-HY 200-A"

Kennzeichnung:

HILTI HIT HY 200-R

Produktionszeit und Produktionsline Verfallsdatum mm/yyyy

Produktname: "Hilti HIT-HY 200-R"

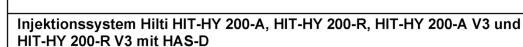
Kennzeichnung: HILTI HIT

HY 200-A V3

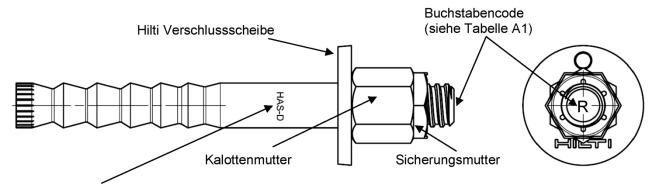
Produktionszeit und Produktionsline Verfallsdatum mm/yyyy

Produktname: "Hilti HIT-HY 200-A V3"

Kennzeichnung: HILTI HIT

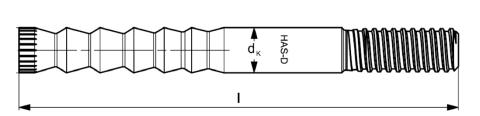

HY 200-R V3

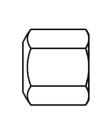
Produktionszeit und Produktionsline Verfallsdatum mm/yyyy


Produktbeschreibung

Injektionsmörtel / Statikmischer

Anhang A2




Befestigungselement: Hilti HAS-D: M12, M16 und M20 mit Verschlussscheibe

Kennzeichnung:

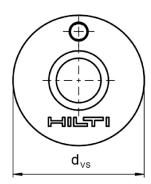
HAS-D M..x L Typ des Befestigungselements sowie Durchmesser und Länge der Ankerstange

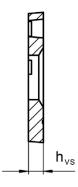
Tabelle A1: Buchstabencode zur Identifikation der Ankerstangenlänge¹⁾

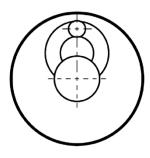
Buchstabencode			I	J	K	L	M	N	0	Р	Q	R
Ankerstangen-	≥	[mm]	139,7	152,4	165,1	177,8	190,5	203,2	215,9	228,6	241,3	254,0
länge l	<	[mm]	152,4	165,1	177,8	190,5	203,2	215,9	228,6	241,3	254,0	279,4

Buchstabencode			S	Т	\supset	>	V	Χ	Υ	Z	>Z
Ankerstangen-	≥	[mm]	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2	482,6
länge l	<	[mm]	304,8	330,2	355,6	381,0	406,4	431,8	457,2	482,6	

¹⁾ Ankerstangenlängen in fett gedruckt entsprechen der Standardlänge. Für die Auswahl anderer Ankerstangenlängen ist die Verfügbarkeit zu prüfen.


Tabelle A2: Abmessungen


HAS-D			M12	M16	M20
Schaftdurchmesser	d_{k}	[mm]	12,5	16,5	22,0
A microston months and i	2	[mm]	143	180	242
Ankerstangenlänge I	<u>≤</u>	[mm]	531	565	623
Kalottenmutter	SW	[mm]	18/19	24	30
Sicherungsmutter	SW	[mm]	19	24	30


Injektionssystem Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 und HIT-HY 200-R V3 mit HAS-D	
Produktbeschreibung Stahlelement	Anhang A3

Hilti Verschlussscheibe zum Verfüllen des Ringspalts zwischen Anker und Anbauteil

Tabelle A3: Geometrie der Hilti Verschlussscheibe

Größe			M12	M16	M20
Durchmesser der Verschlussscheibe	d_{vs}	[mm]	44	52	60
Verschlussscheibenhöhe	\mathbf{h}_{vs}	[mm]	5	6	6

Injektionssystem Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 und HIT-HY 200-R V3 mit HAS-D	
Produktbeschreibung Stahlelement	Anhang A4

Tabelle A4: Werkstoffe

Bezeichnung	Werkstoff
Ankerstange HAS-D	Stahl gemäß EN ISO 683-4, verzinkt und beschichtet
Verschlussscheibe	Stahl, galvanisch verzinkt ≥ 5 μm
Kalottenmutter	Stahl, galvanisch verzinkt ≥ 5 μm
Sicherungsmutter	Stahl, galvanisch verzinkt ≥ 5 μm

Injektionssystem Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 und HIT-HY 200-R V3 mit HAS-D

Produktbeschreibung Werkstoffe Anhang A5

Angaben zum Verwendungszweck

Befestigung unter:

- Statische und quasi-statische Beanspruchung
- · Ermüdungsbeanspruchung.

Verankerungsgrund:

- Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern nach EN 206.
- Festigkeitsklasse C20/25 bis C50/60 nach EN 206.
- · Gerissener und ungerissener Beton.

Temperatur im Verankerungsgrund:

- · beim Einbau
 - -10 °C bis +40 °C für übliche Temperaturveränderung nach dem Einbau
- · im Nutzungszustand

Temperaturbereich: -40 °C bis +80 °C

(max. Langzeittemperatur +50 °C und max. Kurzzeittemperatur +80 °C)

Anwendungsbedingungen (Umweltbedingungen):

In Bauteilen unter den Bedingungen trockener Innenräume.

Bemessung:

- Die Befestigungen müssen unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs bemessen werden.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Befestigungselements (z. B. Lage des Befestigungselements zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit: EN 1992-4 und EOTA Technical Report TR 061.

Installation:

- Nutzungskategorie I1: trockener oder feuchter Beton (nicht in wassergefüllten Bohrlöchern) für alle Bohrverfahren.
- Bohrverfahren:
 - Hammerbohren,
 - · Hammerbohren mit Hohlbohrer TE-CD, TE-YD,
 - Diamantbohren.
- Montagerichtung D3: vertikal nach unten, horizontal und vertikal nach oben (z. B. Überkopf).
- Der Einbau erfolgt durch entsprechend geschulten Personals unter der Aufsicht des Bauleiters.

Injektionssystem Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 und HIT-HY 200-R V3 mit HAS-D	
Verwendungszweck Spezifikationen	Anhang B1

Tabelle B1: Installationsparameter

HAS-D			M12	M16	M20	
Durchmesser des Stahlelements		d	[mm]	12	16	20
Bohrernenndurchmesser		d ₀	[mm]	14	18	24
Wirksame Verankerungstiefe		h _{ef}	[mm]	100	125	170
Minimale Bohrlochtiefe		h ₀	[mm]	105	133	180
Minimale Bauteildicke		h _{min}	[mm]	130	160 ¹⁾ / 170	2201) / 230
Vorsteckmontage: Maximaler Durchmesser des Durchgangslochs im Anbauteil		df	[mm]	14	18	24
<u>Durchsteckmontage:</u> Maximaler Durchmesser des Durchgangslochs im Anbauteil		df	[mm]	16	20	26
Anbauteildicke		t _{fix,min} 2)	[mm]	12	16	20
		t _{fix,max}	[mm]	200		
Installationsdrehmoment		Tinst	[Nm]	30	50	80
Ungerissener Beton	Minimaler Achsabstand	S _{min,ucr}	[mm]	80	60	80
	Minimaler Randabstand	C _{min,ucr}	[mm]	75	80	110
Gerissener Beton	Minimaler Achsabstand	S _{min,cr}	[mm]	50	60	80
	Minimaler Randabstand	C _{min,cr}	[mm]	70	80	110

¹⁾ Die Rückseite des Betonbauteils soll nach dem Bohren unbeschädigt sein.

 $t_{\text{fix,min,red}} = t_{\text{fix,min}} \cdot (0.5 + 0.5 \cdot \Delta V_{\text{Rk,s,0,red}} / \Delta V_{\text{Rk,s}})$

mit $\Delta V_{Rk,s} = \Delta V_{Rk,s,0,n}$ für Bemessungsverfahren I (Tabelle C4)

 $\Delta V_{Rk,s} = \Delta V_{Rk,s,0,\infty}$ für Bemessungsverfahren II (Tabelle C6)

Tabelle B2: Anziehen des Befestigungselements

HAS-D			M12	M16	M20
Drehmomentschlüssel			✓	✓	✓
Maschinensetzen mit Hilti SIW		SIW4 AT	✓	-	-
Schlagschrauber und adaptive SI-AT Anzugsmodule 1)		SIW6 AT	✓	✓	✓

¹⁾ Gleichwertige Kombination aus Hilti SIW + SI-AT, die mit diesem Ankertyp kompatibel ist, kann verwendet werden

Injektionssystem Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 und HIT-HY 200-R V3 mit HAS-D	
Verwendungszweck Installationsparameter	Anhang B2

Die minimale Anbauteildicke t_{fix,min} kann ersetzt werden durch eine reduzierte minimale Anbauteildicke t_{fix,min,red}, wenn ein entsprechend reduzierter Ermüdungswiderstand in Querrichtung ΔV_{Rk,s,0,red} berücksichtigt wird:

Tabelle B3: Maximale Verarbeitungszeit und minimale Aushärtezeit HIT-HY 200-A and HIT-HY 200-R

	HIT-HY	′ 200-A	HIT-HY 200-R		
Temperatur im Verankerungsgrund T	Maximale Verarbeitungszeit t _{work}	Minimale Aushärtezeit t _{cure}	Maximale Verarbeitungszeit t _{work}	Minimale Aushärtezeit t _{cure}	
-10 °C to -5 °C	1,5 h	7 h	3 h	20 h	
> -5 °C to 0 °C	50 min	4 h	2 h	8 h	
> 0 °C to 5 °C	25 min	2 h	1 h	4 h	
>5 °C to 10 °C	15 min	75 min	40 min	2,5 h	
>10 °C to 20 °C	7 min	45 min	15 min	1,5 h	
>20 °C to 30 °C	4 min	30 min	9 min	1 h	
>30 °C to 40 °C	3 min	30 min	6 min	1 h	

Die Temperatur des Foliengebindes darf 0 °C nicht unterschreiten.

Tabelle B4: Maximale Verarbeitungszeit und minimale Aushärtezeit HIT-HY 200-A V3 and HIT-HY 200-R V3

	HIT-HY 2	200-A V3	HIT-HY 200-R V3		
Temperatur im Verankerungsgrund T ¹⁾	Maximale Verarbeitungszeit t _{work}	Minimale Aushärtezeit t _{cure}	Maximale Verarbeitungszeit t _{work}	Minimale Aushärtezeit t _{cure}	
-10 °C to -5 °C	1,5 h	7 h	3 h	20 h	
> -5 °C to 0 °C	50 min	4 h	1,5 h	8 h	
> 0 °C to 5 °C	25 min	2 h	45 min	4 h	
>5 °C to 10 °C	15 min	75 min	30 min	2,5 h	
>10 °C to 20 °C	7 min	45 min	15 min	1,5 h	
>20 °C to 30 °C	4 min	30 min	9 min	1 h	
>30 °C to 40 °C	3 min	30 min	6 min	1 h	

¹⁾ Die Temperatur des Foliengebindes darf 0 °C nicht unterschreiten.

Injektionssystem Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 und HIT-HY 200-R V3 mit HAS-D	
Verwendungszweck Maximale Verarbeitungszeit und minimale Aushärtezeit	Anhang B3

Tabelle B5: Angaben zu Bohr-, Reinigungs- und Setzwerkzeugen

Befestigungs- element		Installation			
	Hamme	erbohren			
HAS-D		Hohlbohrer TE-CD, TE-YD ¹⁾	Diamantbohren	Bürste	Stauzapfen
	CCCC	E	€ •	***************************************	
Größe	d₀ [mm]	d₀ [mm]	d₀ [mm]	HIT-RB	HIT-SZ
M12	14	14	14	14	14
M16	18	18	18	18	18
M20	24	24	24	24	24

Mit Staubsauger Hilti VC 10/20/40 (automatische Filterreinigung aktiviert, ECO-Modus aus) oder einem Staubsauger, der in Kombination mit den spezifizierten Hilti Hohlbohrern TE-CD oder TE-YD eine gleichwertige Reinigungsleistung liefert.

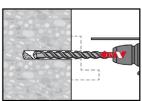
Tabelle B6: Reinigungsalternativen

Druckluftreinigung (CAC):

Ausblasdüse mit einem Durchmesser von mindestens 3,5 mm zum Ausblasen mit Druckluft.

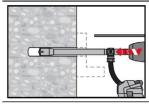
Automatische Reinigung (AC):

Die Reinigung wird während dem Bohren mit dem Hilti TE-CD und TE-YD Bohrsystem inklusive Staubsauger durchgeführt.

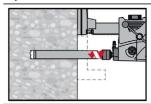

Injektionssystem Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 und HIT-HY 200-R V3 mit HAS-D	
Verwendungszweck Bohr-, Reinigungs- und Setzwerkzeuge	Anhang B4

Montageanweisung

Bohrlochherstellung


a) Hammerbohren

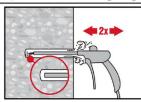
<u>Durchsteckmontage:</u> Bohrloch durch das Durchgangsloch im anzuschließenden Bauteil mit Bohrhammer drehschlagend, unter Verwendung des passenden Bohrerdurchmessers auf die richtige Bohrtiefe erstellen.


<u>Vorsteckmontage:</u> Bohrloch mit Bohrhammer drehschlagend, unter Verwendung des passenden Bohrerdurchmessers auf die richtige Bohrtiefe erstellen

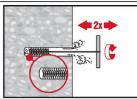
b) Hammerbohren mit Hilti Hohlbohrer (AC)

<u>Vorsteck-/ Durchsteckmontage:</u> Die Bohrlocherstellung bis zur erforderlichen Setztiefe erfolgt drehschlagend mit einem Hilti Hohlbohrer TE-CD oder TE-YD mit angeschlossenem Staubsauger gemäß den Anforderungen nach Tabelle B5. Dieses Bohrsystem beseitigt das Bohrmehl und reinigt das Bohrloch während des Bohrvorgangs. Nach Erstellen des Bohrlochs kann mit dem Arbeitsschritt "Injektionsvorbereitung" gemäß Montageanweisung fortgefahren werden.

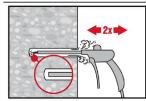
c) Diamantbohren


Diamantbohren ist zulässig, wenn geeignete Diamantbohrmaschinen und zugehörige Bohrkronen verwendet werden.

<u>Durchsteckmontage:</u> Bohrloch durch das Durchgangsloch im anzuschließenden Bauteil auf die richtige Bohrtiefe erstellen.

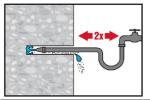

Vorsteckmontage: Bohrloch auf die richtige Bohrtiefe erstellen.

Bohrlochreinigung: unmittelbar vor dem Setzen des Befestigungselements muss das Bohrloch frei von Bohrmehl und Verunreinigungen sein.


a) Druckluftreinigung (CAC): für alle Bohrlochdurchmesser do und Bohrlochtiefen ho.

Bohrloch 2-mal vom Bohrlochgrund über die gesamte Länge mit ölfreier Druckluft (min. 6 bar bei 6 m³/h; falls notwendig mit Verlängerung) ausblasen, bis die rückströmende Luft staubfrei ist.

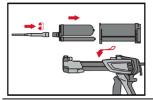
2-mal mit Stahlbürste in passender Größe (siehe Tabelle B5) bürsten. Stahlbürste Hilti HIT-RB mit einer Drehbewegung in das Bohrloch bis zum Bohrlochgrund einführen und wieder herausziehen (falls notwendig mit Verlängerung). Die Bürste muss beim Einführen einen Widerstand erzeugen (Bürste $\emptyset \ge$ Bohrloch \emptyset) – falls nicht, ist die Bürste zu klein und muss durch eine größere Bürste ersetzt werden.


Bohrloch erneut vom Bohrlochgrund über die gesamte Länge 2-mal mit Druckluft ausblasen, bis die rückströmende Luft staubfrei ist.

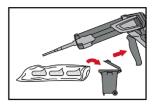
Injektionssystem Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 und HIT-HY 200-R V3 mit HAS-D

Verwendungszweck Montageanweisung **Anhang B5**

b) Reinigung von diamantgebohrten Bohrlöchern: für alle Bohrlochdurchmesser do und Bohrlochtiefen ho.



Bohrloch 2-mal mittels Wasser mit einem Schlauch vom Bohrlochgrund spülen, bis klares Wasser aus dem Bohrloch austritt. Normaler Wasserleitungsdruck genügt.

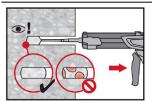


Bohrloch 2-mal mit ölfreier Druckluft (min. 6 bar bei 6m³/h; falls notwendig mit Verlängerung) ausblasen, bis die rückströmende Luft staubfrei und frei von Wasser ist.

Injektionsvorbereitung

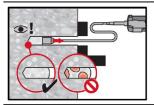
Statikmischer HIT-RE-M fest auf Foliengebinde aufschrauben. Den Mischer unter keinen Umständen verändern. Befolgen Sie die Bedienungsanleitung des Auspressgerätes. Prüfen der Kassette auf einwandfreie Funktion. Foliengebinde in die Kassette einführen und Kassette in Auspressgerät einsetzen.

Das Öffnen der Foliengebinde erfolgt automatisch bei Auspressbeginn. Der am Anfang aus dem Mischer austretende Mörtelvorlauf darf nicht für Befestigungen verwendet werden. Die Menge des Mörtelvorlaufes ist abhängig von der Gebindegröße:

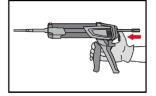

2 Hübe für 330 ml Foliengebinde,

3 Hübe für 500 ml Foliengebinde,

4 Hübe für 500 ml Foliengebinde ≤ 5 °C.


Die Temperatur des Foliengebindes darf 0 °C nicht unterschreiten.

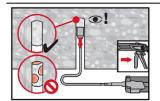
Injektion des Mörtels vom Bohrlochgrund ohne Luftblasen zu bilden (Durch- und Vorsteckmontage).



Injizieren des Mörtels vom Bohrlochgrund und während jedem Hub den Mischer langsam etwas herausziehen.

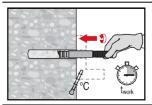
Die Mörtelmenge ist so zu wählen, dass der Ringspalt im Bohrloch vollständig gefüllt ist.

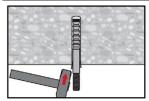
Injizieren des Mörtels mit Hilfe von Stauzapfen und Verlängerungen möglich. HIT-RE-M Mischer, Mischerverlängerung und entsprechenden Stauzapfen (siehe Tabelle B5) zusammenfügen. Den Stauzapfen bis zum Bohrlochgrund einführen und Mörtel injizieren. Während der Injektion wird der Stauzapfen über den Staudruck vom Bohrlochgrund automatisch nach außen geschoben. Die Mörtelmenge ist so zu wählen, dass der Ringspalt im Bohrloch vollständig gefüllt ist.



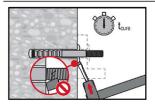
Nach der Mörtelinjektion die Entriegelungstaste am Auspressgerät betätigen, um Mörtelnachlauf zu vermeiden.

Injektionssystem Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 und HIT-HY 200-R V3 mit HAS-D


Verwendungszweck Montageanweisung **Anhang B6**

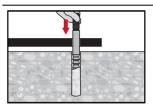

Injizieren des Mörtels bei Überkopfanwendungen ist nur mit Hilfe von Stauzapfen und Verlängerung möglich. HIT-RE-M Mischer, Mischerverlängerung und entsprechenden Stauzapfen (siehe Tabelle B5) zusammenfügen. Stauzapfen bis zum Bohrlochgrund einführen und Mörtel injizieren. Während der Injektion wird der Stauzapfen über den Staudruck vom Bohrlochgrund automatisch nach außen geschoben.

Setzen des Befestigungselements

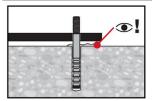


Vor der Montage sicherstellen, dass das Befestigungselement trocken und frei von Öl und anderen Verunreinigungen ist.

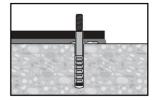
Befestigungselement bis zur erforderlichen Verankerungstiefe einführen, noch vor die Verarbeitungszeit t_{work} (siehe Tabelle B3 und B4) abgelaufen ist.



Bei Überkopfanwendungen das Befestigungselement in seiner endgültigen Position z. B. mittels Keilen gegen Herausrutschen sichern.

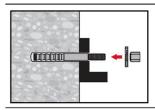


Nach Ablauf der Aushärtezeit t_{cure} (siehe Tabelle B3 und B4) ist der überschüssige Mörtel zu entfernen.

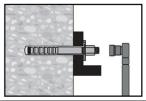

Setzen des Befestigungselements bei Abstand zwischen Beton und Ankerplatte (nur bei reiner Zugbeanspruchung des Ankers)

Befestigungselement bis zur erforderlichen Verankerungstiefe einführen, noch vor die Verarbeitungszeit twork (siehe Tabelle B3 und B4) abgelaufen ist.

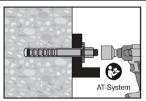
Überprüfen, ob Mörtel aus dem Bohrloch ausgetreten ist. Der Spalt zwischen Betonoberfläche und Anbauteil muss nicht vollständig verfüllt sein.


Nach Ablauf der Aushärtezeit t_{cure} (siehe Tabelle B3 und B4) ist der Spalt zwischen Betonoberfläche und Anbauteil zu verfüllen.

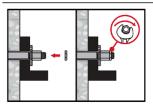
Injektionssystem Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 und HIT-HY 200-R V3 mit HAS-D


Verwendungszweck Montageanweisung **Anhang B7**

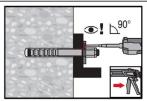
Endgültige Montage mit Verschlussscheibe



Kugelige Seite der Kalottenmutter zur Verschlussscheibe orientieren. Verschlussscheibe und Kalottenmutter auf Gewinde montieren.


a) Drehmomentschlüssel

Das aufzubringende Installationsdrehmoment ist in Tabelle B1 gegeben.



b) Maschienenanzug

Das Maschinensetzen mit Schlagschrauber und adaptive Anzugsmodule nach Tabelle B2. Die Angaben in der Bedienungsanleitung des Herstellers sind zu beachten.

Sicherungsmutter aufdrehen und mit einer 1/4 bis 1/2 Umdrehung anziehen.

Ringspalt zwischen Ankerstange und Anbauteil mit Hilti Injektionsmörtel HIT-HY 200 vollständig verfüllen. Statikmischer muss rechtwinklig auf der Verfüllöffnung aufgesetzt sein.

Befolgen der Setzanweisung der dem Mörtel beigelegten Gebrauchsanweisung. Nach Ablauf der erforderlichen Aushärtezeit t_{cure} (siehe Tabelle B3 und B4) kann das Befestigungselement belastet werden.

Injektionssystem Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 und HIT-HY 200-R V3 mit HAS-D

Verwendungszweck Montageanweisung **Anhang B8**

Tabelle C1: Wesentliche Merkmale unter Zugbeanspruchung bei statischer und quasi-statischer Beanspruchung im Beton

HAS-D				M12	M16	M20
Wirksame	e Verankerungstiefe	h _{ef}	[mm]	100	125	170
Montages	sicherheitsbeiwert	γinst	[-]		1,0	•
Stahlvers	sagen		•			
Charakter	istischer Stahlwiderstand	N _{Rk,s}	[kN]		1)	
Versagen	durch Herausziehen					
Charakter	istische Verbundtragfähigkeit im u	ngerissene	en Beton C2	0/25		
Temperat	urbereich: 50 °C / 80 °C	$N_{Rk,p,ucr}$	[kN]	49,2	68,8	109
Charakter	istische Verbundtragfähigkeit im g	erissenen	Beton C20/2	25		
Temperat	urbereich: 50 °C / 80 °C	$N_{Rk,p,cr}$	[kN]	34,4	48,1	76,3
			C30/37		1,22	
Faktor für	den Einfluß der Betonfestigkeit	Ψc	C40/50		1,41	
			C50/60		1,58	
Versagen	durch Betonausbruch					
Faktor für	ungerissenen Beton	k _{ucr,N}	[-]	[-] 11,0		
Faktor für	gerissenen Beton	k cr,N	[-]	7,7		
Randabst	and	C _{cr,N}	[mm]		$1,5 \cdot h_{\text{ef}}$	
Achsabsta	and	S cr,N	[mm]		$3,0 \cdot h_{\text{ef}}$	
Versagen	durch Spalten bei Standardbau	ıteildicke				
Standardl	pauteildicke	h	[mm]	200	250	340
	Randabstand	C _{cr,sp}	[mm]		$1,5 \cdot h_{\text{ef}}$	
Fall 1	Achsabstand	S cr,sp	[mm]	$2,0\cdot c_{cr,sp}$		
	Charakteristischer Widerstand im ungerissenen Beton C20/25	$N^0_{Rk,sp}$	[kN]	40	50	109
	Randabstand	C _{cr,sp}	[mm]	2,0	· h _{ef}	1,5 ⋅ h _{ef}
Fall 2	Achsabstand	S cr,sp	[mm]		$2,0 \cdot c_{\text{cr,sp}}$	
I WII Z	Charakteristischer Widerstand im ungerissenen Beton C20/25	$N^0_{Rk,sp}$	[kN]	49,2	68,8	109

Injektionssystem Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 und HIT-HY 200-R V3 mit HAS-D	
Leistung Wesentliche Merkmale unter statischen und quasi-statischen Lasten in Beton	Anhang C1

Tabelle C1 Fortsetzung

Versagen	Versagen durch Spalten bei minimaler Bauteildicke						
Minimale E	Bauteildicke	h _{min}	[mm]	130	160	220	
	Randabstand	C _{cr,sp}	[mm]	1,5 · hef			
Fall 1	Achsabstand	S cr,sp	[mm]	2,0 · C _{cr,sp}			
	Charakteristischer Widerstand im ungerissenen Beton C20/25	$N^0_{Rk,sp}$	[kN]	30	40	75	
	Randabstand	C _{cr,sp}	[mm]	3,0 · h _{ef} 2,6 · h _{ef}		$2,\! 6 \cdot h_{\text{ef}}$	
Fall 2	Achsabstand	S cr,sp	[mm]	2,0 · C _{cr,sp}			
	Charakteristischer Widerstand im ungerissenen Beton C20/25	$N^0_{Rk,sp}$	[kN]	49,2	68,8	109	

¹⁾ Leistung auf Basis von EAD 330250-00-0601 nicht bewertet.

Tabelle C2: Wesentliche Merkmale unter Querbeanspruchung bei statischer und quasi-statischer Beanspruchung in Beton

HAS-D			M12	M16	M20
Montagesicherheitsbeiwert	γinst	[-]		1,0	
Stahlversagen ohne Hebelarm					
Charakteristischer Stahlwiderstand	$V^0_{Rk,s}$	[kN]		1)	
Duktilitätsfaktor	k ₇			1,0	
Stahlversagen mit Hebelarm					
Charakteristisches Biegemoment	M^0 Rk,s	[Nm]	1)		
Betonausbruch auf der lastabgewandten S	Seite				
Pry-out Faktor	k ₈	[-]		2,0	
Betonkantenbruch					
Wirksame Länge des Befestigungselements	lf	[mm]	100	125	170
Wirksamer Außendurchmesser des Befestigungselements	d _{nom}	[mm]	14	18	24
Teilsicherheitsbeiwert	γMc ²⁾	[-]		1,5	

¹⁾ Leistung auf Basis von EAD 330250-00-0601 nicht bewertet.

Injektionssystem Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 und HIT-HY 200-R V3 mit HAS-D	
Leistung Wesentliche Merkmale unter unter statischen und quasi-statischen Lasten in Beton	Anhang C2

²⁾ Sofern andere nationale Regelungen fehlen.

Tabelle C3: Wesentliche Merkmale unter Zug-Ermüdungsbeanspruchung in Beton (Bemessungsverfahren I nach TR 061)

HAS-D			M12	M16	M20
Stahlversagen					
Charakteristischer Stahlwiders	stand	[kN]		$\Delta N_{\text{Rk,s,0,n}}$ 1)	
		= 1	53,9	83,4	112,1
		≤ 10 ³	48,3	78,8	92,7
		≤ 3·10³	45,9	77,1	89,9
		≤ 10 ⁴	41,4	73,1	83,4
Lastspielzahl	n	≤ 3·10⁴	35,9	66,3	73,8
		≤ 10 ⁵	29,1	55,8	60,9
		≤ 3·10 ⁵	24,2	45,5	50,7
		≤ 10 ⁶	21,1	37,4	44,9
		> 106	20,1	34,0	43,5
Teilsicherheitsbeiwert γ _{Ms,N,fat} [-] nach TR 061, Eq. (3))		
Betonversagen			$\Delta N_{Rk,(c/p)}$	$_{\text{o/sp}),0,n} = \eta_{k,c,N,\text{fat,n}} \cdot \mathbf{N}_{R}$	k,(c/p/sp) ²⁾
Wirksame Verankerungstiefe	h _{ef}	[mm]	100	125	170
Abminderungsfaktor		[-]		ηk,c,N,fat,n	
		= 1		1,0	
		≤ 10 ³		0,932	
		≤ 3·10³		0,893	
		≤ 10 ⁴		0,841	
Lastspielzahl	n	≤ 3·10 ⁴		0,794	
		≤ 10 ⁵		0,75	
		≤ 3·10 ⁵		0,722	
		≤ 10 ⁶		0,704	
		> 10 ⁶		0,693	
Teilsicherheitsbeiwert	γMc,fat	[-]		1,5	
Lastumlagerungsfaktor für Befestigungsgruppen	ΨFN	[-]		0,79	

Versagen im gerissenen Beton durch kombiniertes Versagen Herausziehen / Betonausbruch $\Delta N_{Rk,p,0,n}$ im niederzyklischen Belastungsbereich ist mitberücksichtigt worden.

Injektionssystem Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 und HIT-HY 200-R V3 mit HAS-D	
Leistung Wesentliche Merkmale unter Zug-Ermüdungsbeanspruchung in Beton (Bemessungsverfahren I nach TR 061)	Anhang C3

²⁾ N_{Rk,(c/p/sp)} nach Tabelle C1.

Tabelle C4: Wesentliche Merkmale unter Querzug-Ermüdungsbeanspruchung in Beton (Bemessungsverfahren I nach TR 061)

HAS-D			M12	M16	M20
Stahlversagen		-			
Charakteristischer Stahlwiderstand [kN]			$\Delta V_{Rk,s,0,n}$		
	= 1	34,0	63,0	149,0	
		≤ 10 ³	27,6	54,0	113,5
		≤ 3·10 ³	23,8	47,2	91,6
		≤ 10⁴	18,6	36,5	65,0
Lastspielzahl	n	≤ 3·10 ⁴	14,1	26,2	43,9
		≤ 10 ⁵	10,5	18,4	29
		≤ 3·10 ⁵	8,9	15,6	23,2
		≤ 10 ⁶	8,2	15,0	21,3
		> 106	8,2	15,0	21,1
Teilsicherheitsbeiwert	γMs,V,fat	[-]	nach TR 061, Eq. (3)		
Betonversagen		·	$\Delta V_{Rk,(c,cp),0,n} = \eta_{k,c,V,fat,n} \cdot V_{Rk,(c,cp)}$		
Wirksame Länge des Befestigungselements	lf	[mm]	100	125	170
Wirksamer Außendurch- messer des Befestigungs- elements	d _{nom}	[mm]	14	18	24
Abminderungsfaktor		[-]		ηκ,c,V,fat,n	
		= 1		1,0	
		≤ 10 ³	0,799		
		≤ 3·10³		0,760	
		≤ 10 ⁴	0,725		
Lastspielzahl	n	≤ 3·10 ⁴	0,700		
		≤ 10 ⁵		0,68	
		≤ 3·10 ⁵	0,668		
		≤ 10 ⁶	0,660		
		> 106	0,652		
Teilsicherheitsbeiwert	γMc,fat	[-]		1,5	
Lastumlagerungsfaktor für Befestigungsgruppen	faktor für			0,81	

 $V_{Rk,(c,cp)}$ nach Tabelle C2.

Injektionssystem Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 und HIT-HY 200-R V3 mit HAS-D	
Leistung Wesentliche Merkmale unter Querzug-Ermüdungsbeanspruchung in Beton (Bemessungsverfahren I nach TR 061)	Anhang C4

Tabelle C5: Wesentliche Merkmale unter Zug-Ermüdungsbeanspruchung in Beton (Bemessungsverfahren II nach TR 061)

•	-					
HAS-D			M12	M16	M20	
Stahlversagen						
Charakteristischer Stahlwiderstand	$\Delta N_{\text{Rk,s,0,}\infty}$	[kN]	20,1	34,0	43,5	
Teilsicherheitsbeiwert	γMs,N,fat	[-]	1,35			
Betonversagen			$\Delta N_{Rk,(c/p/sp),0,\infty} = \eta_{k,c,N,fat,\infty} \cdot N_{Rk(c/p/sp)^{1)}}$			
Wirksame Verankerungstiefe	h _{ef}	[mm]	100	125	170	
Abminderungsfaktor	η k,c,N,fat,∞	[-]	0,693			
Teilsicherheitsbeiwert	γMc,fat	[-]	1,5			
Lastumlagerungsfaktor für Befestigungsgruppen	ΨFN	[-]	0,79			

¹⁾ N_{Rk,(c/p/sp)} nach Tabelle C1.

Tabelle C6: Wesentliche Merkmale unter Querzug-Ermüdungsbeanspruchung in Beton (Bemessungsverfahren II nach TR 061)

HAS-D			M12	M16	M20	
Stahlversagen						
Charakteristischer Stahlwiderstand	$\Delta V_{\text{Rk,s,0,}\infty}$	[kN]	8,2	15,0	21,1	
Teilsicherheitsbeiwert	γMs,V,fat	[-]		1,35		
Betonversagen			$\Delta V_{Rk,(c,cp),0,\infty} = \eta_{k,c,V,fat,\infty} \cdot V_{Rk,(c,cp)} $			
Wirksame Länge des Befestigungselements	I f	[mm]	100	125	170	
Wirksamer Außendurch- messer des Befestigungs- elements	d_{nom}	[mm]	14	18	24	
Abminderungsfaktor	ηk,c,V,fat,∞	[-]	0,652			
Teilsicherheitsbeiwert	γMc,fat	[-]	1,5			
Lastumlagerungsfaktor für Befestigungsgruppen	ΨFV	[-]	0,81			

 $V_{Rk,(c,cp)}$ nach Tabelle C2.

Tabelle C7: Wesentliche Merkmale unter kombinierter Ermüdungsbeanspruchung in Beton (Bemessungsverfahren I und II nach TR 061)

HAS-D		M12	M16	M20
Exponent für kombinierte	α_{sn} [-]	1,5		
Belastung	α _c [-]		1,5	

Injektionssystem Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 und HIT-HY 200-R V3 mit HAS-D	
Leistung Wesentliche Merkmale unter Zug-, Querzug- und kombinierter Ermüdungsbeanspruchung in Beton (Bemessungsverfahren I und II nach TR 061)	Anhang C5

DIBt

Deutsches Institut für Bautechnik

Instytucja prawa publicznego powołana wspólnie przez kraje związkowe i rząd federalny

Europejska Jednostka Oceny Technicznej dla wyrobów budowlanych

Jednostka wyznaczona zgodnie z art. 29 rozporządzenia (UE) nr 305/2011 oraz członek Europejskiej Organizacji ds. Oceny Technicznej (EOTA)

Europejska Ocena Techniczna

ETA-18/0978 z 26 września 2024 r.

Tłumaczenie na język angielski opracowane przez Niemiecki Instytut Techniki Budowlanej (DIBt) - wersja oryginalna w języku niemieckim

Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti

Część ogólna

Jednostka Oceny Technicznej wydająca Europejską Ocenę Techniczną:	Deutsches Institut für Bautechnik
Nazwa handlowa wyrobu budowlanego	System iniekcyjny Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 oraz HIT-HY 200-R V3 z HAS-D
	Wklejane łączniki do stosowania w betonie przy cyklicznym obciążeniu zmęczeniowym
Producent	Hilti Aktiengesellschaft Feldkircherstrasse 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN
Zakład produkcyjny	Zakłady Hilti
Niniejsza Europejska Ocena Techniczna zawiera	23 strony, w tym 3 załączniki stanowiące integralną część oceny technicznej
Niniejsza Europejska Ocena Techniczna została wydana zgodnie z Rozporządzeniem (UE) nr 305/2011 na podstawie	EAD 330250-00-0601, Wydanie 06/2021
Niniejsza wersja zastępuje	ETA-18/0978 wydaną dnia 22 czerwca 2023 r.

DIBt
Deutsches Institut für Bautechnik

Europejska Ocena Techniczna ETA-18/0978

Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti Strona 2 z 23 | 26 września 2024 r.

Niniejsza Europejska Ocena Techniczna została wydana przez Jednostkę Oceny Technicznej w języku urzędowym tej jednostki. Tłumaczenia niniejszej Europejskiej Oceny Technicznej na inne języki powinny w pełni odpowiadać oryginalnie wydanemu dokumentowi i powinny być oznaczone jako tłumaczenia.

Niniejsza Europejska Ocena Techniczna, włączając w to jej formy elektroniczne, może być rozpowszechniana wyłącznie w całości. Jakkolwiek publikowanie części dokumentu jest możliwe wyłącznie za pisemną zgodą Jednostki Oceny Technicznej. W tym przypadku na kopii powinna być podana informacja, że jest to fragment dokumentu.

Niniejsza Europejska Ocena Techniczna może zostać wycofana przez wydającą ją Jednostkę Oceny Technicznej, w szczególności na podstawie informacji Komisji zgodnie z Artykułem 25(3) Rozporządzenia (UE) nr 305/2011.

Europejska Ocena Techniczna ETA-18/0978

Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti Strona 3 z 23 | 26 września 2024 r.

Część szczegółowa

1 Opis techniczny wyrobu

System iniekcyjny Hilti HIT-HY 200 z HAS-D stanowi kotwę wklejaną z kontrolą momentu dokręcającego, obejmującą ładunek foliowy z żywicą iniekcyjną Hilti HIT-HY 200-A, Hilti HIT-HY 200-R, Hilti HIT-HY 200-R V3 lub Hilti HIT-HY 200-R V3, pręt kotwy Hilti HAS-D, podkładkę iniekcyjną Hilti, nakrętkę sześciokątną i nakrętkę kontrującą.

Przenoszenie obciążenia odbywa się przez połączenie kształtowe kilku stożków w żywicy, a następnie przez połączenie wiązania chemicznego oraz sił tarcia występujących w podłożu kotwiącym (betonie).

Opis wyrobu podano w Załączniku A.

2 Określenie zamierzonego zastosowania, zgodnie z odpowiednim Europejskim Dokumentem Oceny (EAD)

Właściwości użytkowe podane w Rozdziale 3 obowiązują wyłącznie wtedy, gdy kotwa jest stosowana zgodnie ze specyfikacjami i warunkami podanymi w Załączniku B.

Weryfikacja i metody oceny, na których oparta jest niniejsza Europejska Ocena Techniczna, zakładają okres użytkowania kotwy wynoszący co najmniej 50 lat. Wskazania dotyczące okresu użytkowania wyrobu nie mogą być interpretowane jako gwarancja udzielana przez producenta, ale jako informacja, która może być wykorzystana przy wyborze odpowiedniego wyrobu, w związku z przewidywanym, ekonomicznie uzasadnionym okresem użytkowania danej konstrukcji.

3 Właściwości użytkowe wyrobu oraz metody zastosowane do ich oceny

3.1 Nośność i stateczność (podstawowe wymagania 1)

Zasadnicze charakterystyki (obciążenie statyczne i quasi-statyczne oraz obciążenie sejsmiczne)	Właściwości użytkowe
Nośność charakterystyczna ze względu na obciążenie rozciągające (obciążenie statyczne i quasi-statyczne)	patrz Załącznik B2, C1 i C2
Nośność charakterystyczna ze względu na obciążenie ścinające (obciążenie statyczne i quasi-statyczne)	patrz Załącznik C2
Przemieszczenia przy obciążeniu krótkotrwałym i długotrwałym (obciążenie statyczne i quasi-statyczne)	Nie oceniano właściwości użytkowych w tym zakresie
Nośność charakterystyczna i przemieszczenia dla kategorii wytrzymałości sejsmicznej C1 i C2	na podstawie EAD 330250-00-0601

Zasadnicze charakterystyki (obciążenie zmęczeniowe, metoda oceny A: funkcja ciągła nośności zmęczeniowej)	Właściwości użytkowe
Charakterystyczna nośność zmęczeniowa przy cyklicznym obc	iążeniu rozciągającym
Charakterystyczna nośność zmęczeniowa stali $\Delta N_{Rk,s,0,n}$ $(n=1 \text{ do } n=\infty)$	
Charakterystyczna nośność zmęczeniowa ze względu na zniszczenie przez wyłamanie stożka betonu, wyciągnięcie kotwy i rozłupanie $\Delta N_{Rk,c0,n} \Delta N_{Rk,p0,n} \Delta N_{Rk,sp0,n} (n=1 \text{ do } n=\infty)$	Patrz Załącznik C3 i C5

Europejska Ocena Techniczna ETA-18/0978

Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti Strona 4 z 23 | 26 września 2024 r.

Zasadnicze charakterystyki (obciążenie zmęczeniowe, metoda oceny A: funkcja ciągła nośności zmęczeniowej)	Właściwości użytkowe			
Charakterystyczna nośność zmęczeniowa przy cyklicznym obciążeniu ścinającym				
Charakterystyczna nośność zmęczeniowa stali $\Delta V_{Rk,s0,n}$ $(n=1 \text{ do } n=\infty)$	Patrz Załącznik C4 i C5			
Charakterystyczna nośność zmęczeniowa ze względu na zniszczenie krawędzi betonu $V_{Rk,c,0,n}$ $(n=1 \text{ do } n=\infty)$				
Charakterystyczna nośność zmęczeniowa ze względu na zniszczenie betonu przez podważenie $\Delta V_{Rk,cp,0,n} \ (n=1 \ {\rm do} \ n=\infty)$				
Charakterystyczna nośność zmęczeniowa przy cyklicznym połączonym obciążeniu rozciągającym i ścinającym				
Charakterystyczna nośność zmęczeniowa stali a_{sn} $(n = 1 \text{ do } n = \infty)$	Patrz Załącznik C5			
Współczynnik przeniesienia obciążania dla cyklicznych obciążeń rozciągających i ścinających				
Współczynnik przeniesienia obciążania $\psi_{\mathit{FN}}, \psi_{\mathit{FV}}$	Patrz załączniki C3 - C5			

3.2 Higiena, zdrowie i środowisko (podstawowe wymagania 3)

Zasadnicze charakterystyki	Właściwości użytkowe
Zawartość, emisja i/lub uwalnianie niebezpiecznych	Nie oceniano właściwości
substancji	użytkowych w tym zakresie

4 System oceny i weryfikacji stałości właściwości użytkowych (AVCP) wraz z odniesieniem do jego podstawy prawnej

Zgodnie z Europejskim Dokumentem Oceny (EAD) nr 330250-00-0601, właściwy europejski akt prawny to: [96/582/WE].

Zastosowanie ma system: 1

5 Szczegóły techniczne niezbędne do wdrożenia systemu AVCP, zgodnie z właściwym Europejskim Dokumentem Oceny

Szczegóły techniczne niezbędne do wdrożenia systemu AVCP zostały określone w planie kontroli złożonym w Deutsches Institut für Bautechnik.

DIBt
Deutsches Institut für Bautechnik

Europejska Ocena Techniczna ETA-18/0978

Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti Strona 5 z 23 | 26 września 2024 r.

Normy i dokumenty wymienione w niniejszej Europejskiej Ocenie Technicznej:

EN ISO 683-4:2018 Stale do obróbki cieplnej, stale stopowe i stale automatowe - Część 4:

Stale automatowe (ISO 683-4:2016)

- EN 206:2013 + A2:2021 Beton - Wymagania, właściwości, produkcja i zgodność

EN 1992-4:2018 Eurokod 2: Projektowanie konstrukcji z betonu - Część 4: Projektowanie

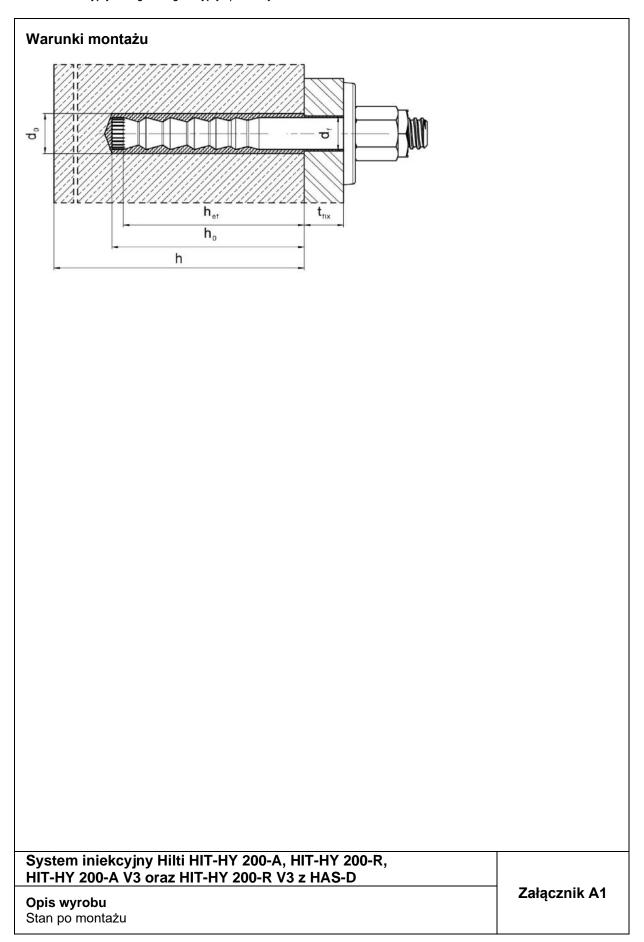
zamocowań do stosowania w betonie

- EOTA TR 055 Projektowanie zamocowań na podstawie dokumentów oceny technicznej

EAD 330232-00-0601, EAD 330499-00-0601 i EAD 330747-00-0601,

wyd. luty 2018 r.

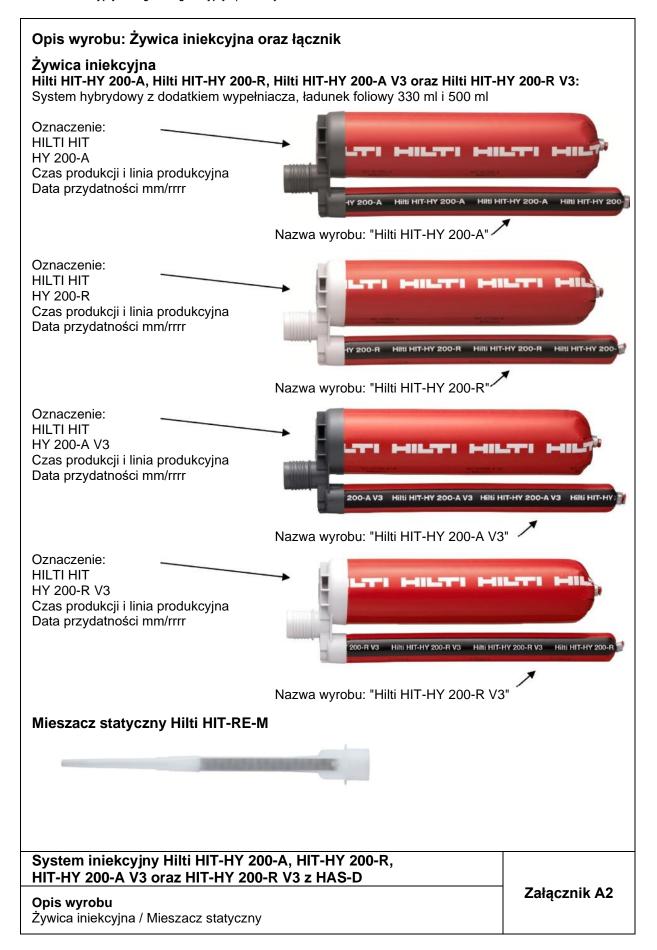
Dokument wydany w Berlinie 26 września 2024 r. przez Deutsches Institut für Bautechnik


Beatrix Wittstock uwierzytelnione przez:

Kierownik Działu Stiller

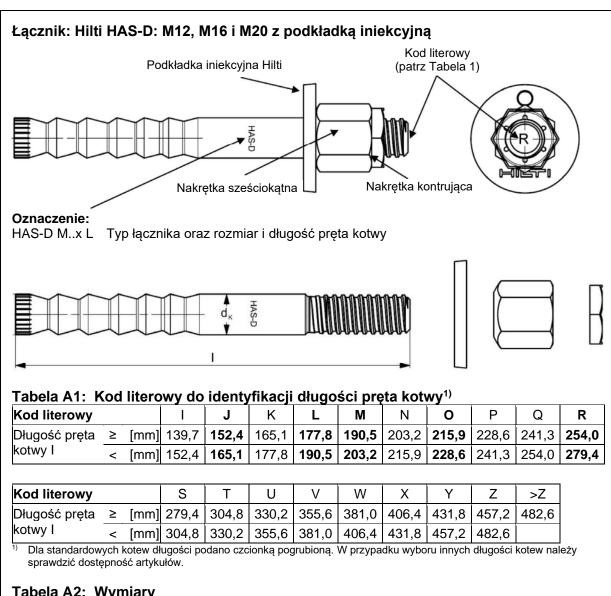
Strona 6 Europejskiej Oceny Technicznej ETA-18/0978 z 26 września 2024 r.

DIBt
Deutsches Institut für Bautechnik


Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti

Strona 7 Europejskiej Oceny Technicznej ETA-18/0978 z 26 września 2024 r.

DIBt
Deutsches Institut für Bautechnik

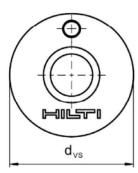

Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti

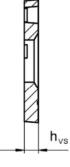
Strona 8 Europejskiej Oceny Technicznej ETA-18/0978 z 26 września 2024 r.

DIBt Deutsches Institut für Bautechnik

Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti

Tabela Az. Wyliliai y					
HAS-D			M12	M16	M20
Średnica trzpienia	dk	[mm]	12,5	16,5	22,0
Długość pręta kotwy I	≥	[mm]	143	180	242
	≤	[mm]	531	565	623
Nakrętka sześciokątna	SW	[mm]	18/19	24	30
Nakrętka kontrująca	SW	[mm]	19	24	30


_	em iniekcyjny Hilti HIT-HY 200-A, HIT-HY 200-R, HY 200-A V3 oraz HIT-HY 200-R V3 z HAS-D	
	wyrobu ent stalowy	Załącznik A3


Strona 9 Europejskiej Oceny Technicznej ETA-18/0978 z 26 września 2024 r.

DIBt
Deutsches Institut für Bautechnik

Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti

Podkładka iniekcyjna Hilti do wypełniania szczeliny pierścieniowej pomiędzy kotwą a elementem mocowanym

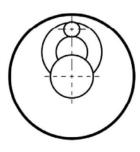


Tabela A3: Geometria podkładki iniekcyjnej Hilti

Rozmiar			M12	M16	M20
Średnica podkładki iniekcyjnej	d _{vs}	[mm]	44	52	60
Grubość podkładki iniekcyjnej	h _{vs}	[mm]	5	(5

System iniekcyjny Hilti HIT-HY 200-A, HIT-HY 200-R,
HIT-HY 200-A V3 oraz HIT-HY 200-R V3 z HAS-D

Opis wyrobu
Element stalowy

Opis wyrobu Materiały

Strona 10 Europejskiej Oceny Technicznej ETA-18/0978 z 26 września 2024 r.

DIBt Deutsches Institut für Bautechnik

Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti

Tabela A4: Materialy		
Nazwa elementu	Materiał	
Pręt kotwy HAS-D	Stal wg EN ISO 683-4, ocynkowana i powlekana	
Podkładka iniekcyjna	Stal, ocynkowana galwanicznie ≥ 5µm	
lakrętka sześciokątna	Stal, ocynkowana galwanicznie ≥ 5µm	
lakrętka kontrująca	Stal, ocynkowana galwanicznie ≥ 5µm	
	ti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-R V3 z HAS-D	

Strona 11 Europejskiej Oceny Technicznej ETA-18/0978 z 26 września 2024 r.

DIBt
Deutsches Institut für Bautechnik

Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti

Szczegóły techniczne zamierzonego zastosowania

Zakotwienia mogą być poddawane:

- Obciążeniom statycznym i quasi-statycznym.
- Cyklicznemu obciążeniu zmęczeniowemu.

Materiał podłoża:

- Zbrojony lub niezbrojony beton zwykły zagęszczany bez włókien zgodnie z normą EN 206.
- Klasy wytrzymałości od C20/25 do C50/60 zgodnie z normą EN 206.
- · Beton zarysowany i niezarysowany.

Temperatura materiału podłoża:

- podczas montażu
 - od -10°C do +40°C dla typowych wahań temperatury po montażu
- w trakcie eksploatacji

od -40°C do +80°C (maks. temperatura przy oddziaływaniu długotrwałym +50 °C oraz maks. temperatura przy oddziaływaniu krótkotrwałym +80 °C)

Warunki użycia (warunki środowiskowe):

• Konstrukcje pracujące w suchych warunkach wewnętrznych.

Projektowanie:

- Zakotwienia powinny być zaprojektowane pod nadzorem inżyniera doświadczonego w dziedzinie zakotwień i robót betonowych.
- Należy sporządzić możliwe do weryfikacji obliczenia oraz dokumentację rysunkową
 z uwzględnieniem obciążeń, jakie mają być przeniesione przez kotwy. Położenie łącznika musi
 być określone na rysunkach projektowych (np. poprzez podanie położenia łącznika względem
 zbrojenia lub względem podpór, itd.).
- Zakotwienia podlegające cyklicznemu obciążeniu zmęczeniowemu muszą być zaprojektowane zgodnie z: normą EN 1992-4 i Raportem technicznym EOTA TR 061.

Montaż:

- Kategoria I1: beton suchy lub mokry (osadzanie w otworach zalanych wodą jest zabronione).
- Techniki wiercenia otworów:
 - wiercenie udarowe.
 - wiercenie udarowe wiertłem rurowym TE-CD, TE-YD,
 - wiercenie diamentowe (rdzeniowe).
- Kierunek montażu D3: montaż pionowo do dołu, poziomo i pionowo w górę (np. w pozycji nad głową).
- Montaż łączników powinien być wykonywany przez wykwalifikowany personel, pod nadzorem osoby odpowiedzialnej za kwestie techniczne na terenie budowy.

System iniekcyjny Hilti HIT-HY 200-A, HIT-HY 200-R,	
HIT-HY 200-A V3 oraz HIT-HY 200-R V3 z HAS-D	
Zamierzone zastosowanie	Załącznik B1
Specyfikacie	

Strona 12 Europejskiej Oceny Technicznej ETA-18/0978 z 26 września 2024 r.

DIBt
Deutsches Institut für Bautechnik

Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti

Tabela B1: Parametry montażu

HAS-D				M12	M16	M20
Średnica elementu stal	owego	d	[mm]	12 16 20		
Średnica nominalna wi	ertła	d ₀	[mm]	14	18	24
Efektywna głębokość o	sadzenia	h _{ef}	[mm]	100	125	170
Minimalna głębokość w	vierconego otworu	h ₀	[mm]	105	133	180
Minimalna grubość ele	mentu betonowego	h _{min}	[mm]	130	160 ¹⁾ /170	2201)/ 230
Osadzanie nieprzeloto Maksymalna średnica w elemencie mocowan	otworu przelotowego	df	[mm]			
Osadzanie przelotowe: Maksymalna średnica w w elemencie mocowan	otworu przelotowego	df	[mm]	16 20 26		
Oh		t _{fix,min} 2)	[mm]	12	16	20
Grubość elementu mod	cowanego	t _{fix,max}	[mm]	200		
Montażowy moment do	kręcający	T _{inst}	[Nm]	30	50	80
	Minimalny rozstaw	Smin,ucr	[mm]	80	60	80
Beton niezarysowany Minimalna odleg krawędzi podłoża		Cmin,ucr	[mm]	75	80	110
	Minimalny rozstaw	Smin,cr	[mm]	50	60	80
Beton zarysowany	Minimalna odległość od krawędzi podłoża	C _{min,cr}	[mm]	70	80	110

¹⁾ Strona tylna elementu betonowego po wierceniu powinna pozostać nieuszkodzona.

 $t_{\text{fix,min,red}} = t_{\text{fix,min}} \cdot (0.5 + 0.5 \cdot \Delta V_{\text{Rk,s,0,red}} / \Delta_{\text{VRk,s}})$

gdzie $\Delta V_{Rk,s}$ = $\Delta V_{Rk,s,0,n}$ dla metody projektowej I (Tabela C4)

 $\Delta V_{Rk,s}$ = $\Delta V_{Rk,s,0,\infty}$ dla metody projektowej II (Tabela C6)

Tabela B2: Metody przykładania momentu dokręcającego

HAS-D			M12	M16	M20
Klucz dynamometryczny	4		✓	✓	✓
Dokręcanie maszynowe zakrętarką z udarem		SIW4 AT	✓	-	-
stycznym Hilti SIW i modułem dynamometrycznym (adapterem) SI-AT 1)		SIW6 AT	√	✓	✓

¹⁾ Można zastosować równoważną kombinację urządzenia Hilti SIW + SI-AT, kompatybilną z tym typem kotwy

	_
System iniekcyjny Hilti HIT-HY 200-A, HIT-HY 200-R,	
HIT-HY 200-A V3 oraz HIT-HY 200-R V3 z HAS-D	
Zamierzone zastosowanie Parametry montażu	Załącznik B2

Jeśli jest brana pod uwagę zmniejszona nośność zmęczeniowa w kierunku poprzecznym ΔV_{Rk,s,0,red}, minimalną grubość elementu mocowanego t_{fix,min,red}:

Strona 13 Europejskiej Oceny Technicznej ETA-18/0978 z 26 września 2024 r.

DIBt
Deutsches Institut für Bautechnik

Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti

Tabela B3: Maksymalny czas roboczy oraz minimalny czas utwardzania HIT-HY 200-A HIT-HY 200-R

Temperatura	HIT-HY	200-A	HIT-HY 200-R		
materiału podłoża T ¹⁾	Maksymalny czas roboczy t _{work}	Minimalny czas utwardzania t _{cure}	Maksymalny czas roboczy t _{work}	Minimalny czas utwardzania t _{cure}	
od -10°C do -5°C	1,5 godz.	7 godz.	3 godz.	20 godz.	
> -5 °C do 0 °C	50 min	4 godz.	2 godz.	8 godz.	
> 0°C do 5°C	25 min	2 godz.	1 godz.	4 godz.	
> 5 °C do 10 °C	15 min	75 min	40 min	2,5 godz.	
> 10 °C do 20 °C	7 min	45 min	15 min	1,5 godz.	
> 20°C do 30°C	4 min	30 min	9 min	1 godz.	
> 30 °C do 40 °C	3 min	30 min	6 min	1 godz.	

¹⁾ Minimalna temperatura ładunku foliowego wynosi 0°C.

Tabela B4: Maksymalny czas roboczy oraz minimalny czas utwardzania HIT-HY 200-A V3 i HIT-HY 200-R V3

Temperatura	HIT-HY 2	200-A V3	HIT-HY 200-R V3		
materiału podłoża T ¹⁾			Maksymalny czas roboczy t _{work}	Minimalny czas utwardzania t _{cure}	
od -10°C do -5°C	1,5 godz.	7 godz.	3 godz.	20 godz.	
> -5 °C do 0 °C	50 min	4 godz.	1,5 godz.	8 godz.	
> 0°C do 5°C	25 min	2 godz.	45 min	4 godz.	
> 5 °C do 10 °C	15 min	75 min	30 min	2,5 godz.	
> 10°C do 20°C	7 min	45 min	15 min	1,5 godz.	
> 20°C do 30°C	4 min	30 min	9 min	1 godz.	
> 30 °C do 40 °C	3 min	30 min	6 min	1 godz.	

¹⁾ Minimalna temperatura ładunku foliowego wynosi 0°C.

System iniekcyjny Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 oraz HIT-HY 200-R V3 z HAS-D	
Zamierzone zastosowanie Maksymalny czas roboczy oraz minimalny czas utwardzania	Załącznik B3

Strona 14 Europejskiej Oceny Technicznej ETA-18/0978 z 26 września 2024 r.

DIBt
Deutsches Institut für Bautechnik

Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti

Tabela B5: Parametry narzędzi do wiercenia, czyszczenia i osadzania

Łącznik		Montaż			
	Wiercenie	udarowe	Wiercenie		Końcówka
HAS-D		Wiertło rurowe TE-CD, TE-YD ¹⁾	diamentowe (rdzeniowe)	Szczotka	iniekcyjna
Rozmiar	d₀ [mm]	d₀ [mm]	d ₀ [mm]	HIT-RB	HIT-SZ
M12	14	14	14	14	14
M16	18	18	18	18	18
M20	24	24	24	24	24

Z odkurzaczem Hilti VC 10/20/40 (z włączoną funkcją automatycznego czyszczenia, tryb eco wyłączony) lub odkurzaczem o równoważnej wydajności czyszczenia w połączeniu z określonym wiertłem rurowym TE-CD lub TE-YD.

Tabela B6: Metody czyszczenia otworów

Czyszczenie sprężonym powietrzem (CAC):

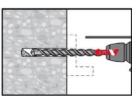
Dysza do sprężonego powietrza z otworem wylotowym o średnicy co najmniej 3,5 mm.

Czyszczenie automatyczne (AC):

Czyszczenie podczas wiercenia przeprowadza się z użyciem systemu wierteł Hilti TE-CD i TE-YD przyłączonych do odkurzacza.

System iniekcyjny Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 oraz HIT-HY 200-R V3 z HAS-D	
Zamierzone zastosowanie Narzędzia do wiercenia, czyszczenia i osadzania	Załącznik B4

Strona 15 Europejskiej Oceny Technicznej ETA-18/0978 z 26 września 2024 r.


DIBt
Deutsches Institut für Bautechnik

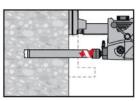
Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti

Instrukcja montażu

Wiercenie otworów

a) Wiercenie udarowe

Osadzanie przelotowe: Wywiercić otwór o wymaganej głębokości wiercenia przez otwór przelotowy w elemencie mocowanym młotowiertarką w trybie obrotowo-udarowym z użyciem odpowiedniego rozmiaru wiertła z końcówką z węglików spiekanych.

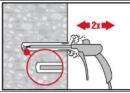

Osadzanie nieprzelotowe: Wywiercić otwór o wymaganej głębokości wiercenia młotowiertarką w trybie obrotowo-udarowym z użyciem odpowiedniego rozmiaru wiertła z końcówką z węglików spiekanych.

b) Wiertarka udarowa z wiertłem rurowym Hilti (AC)

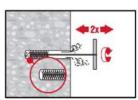
Osadzanie nieprzelotowe/przelotowe: Wywiercić otwór o wymaganej głębokości osadzenia odpowiednim wiertłem rurowym TE-CD lub TE-YD prodłączonym do odkurzacza zgodnie z wymaganiami podanymi w Tabeli B5. Podczas użycia zgodnie z instrukcją obsługi, system usuwa zwierciny oraz oczyszcza otwór podczas wiercenia. Po zakończeniu wiercenia przejść do etapu "przygotowanie iniekcji żywicy" w instrukcji montażu.

c) Wiercenie diamentowe (rdzeniowe)

Wiercenie techniką diamentową rdzeniową jest dopuszczane w przypadku użycia odpowiednich wiertnic diamentowych oraz dopasowanych wierteł rdzeniowych.

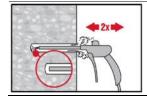

<u>Osadzanie przelotowe:</u> Wywiercić otwór o wymaganej głębokości wiercenia przez otwór przelotowy w elemencie mocowanym.

<u>Osadzanie nieprzelotowe:</u> Wywiercić otwór o wymaganej głębokości osadzenia.


Czyszczenie otworów: przed osadzeniem łącznika wiercony otwór musi być oczyszczony ze zwiercin i zanieczyszczeń.

a) Czyszczenie sprężonym powietrzem (CAC):

wszystkie otwory o średnicy do oraz głębokości ho.



Przedmuchać dwukrotnie od dna otworu (użyć przedłużki dyszy, jeśli to konieczne) na całej długości przy użyciu bezolejowego sprężonego powietrza (min. 6 bar przy 6 m³/h) do momentu, gdy wylatujący strumień powietrza nie zawiera widocznego pyłu.

Wyszczotkować dwukrotnie otwór przy użyciu stalowej szczotki Hilti HIT-RB o określonym rozmiarze (patrz Tabela B5) poprzez jej wprowadzenie ruchem okrężnym do dna otworu (stosując przedłużkę, jeśli to konieczne) i wyciągnięcie.

Szczotka powinna napotykać opór podczas wkładania do otworu (Ø szczotki ≥ Ø otworu) - szczotkę o zbyt małej średnicy należy wymienić na szczotkę o odpowiedniej średnicy.

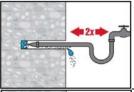
Ponownie przedmuchać dwukrotnie otwór sprężonym powietrzem do momentu, gdy wylatujący strumień powietrza nie zawiera widocznego pyłu.

System iniekcyjny Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 oraz HIT-HY 200-R V3 z HAS-D

Zamierzone zastosowanie

Instrukcja montażu

Załącznik B5

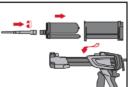

Strona 16 Europejskiej Oceny Technicznej ETA-18/0978 z 26 września 2024 r.

DIBt
Deutsches Institut für Bautechnik

Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti

b) Czyszczenie otworów wywierconych techniką diamentową rdzeniową:

wszystkie otwory o średnicy do oraz głębokości ho.

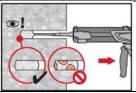


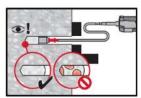
Przepłukać dwukrotnie wywiercony otwór poprzez wprowadzenie aż do dna otworu węża z wodą (ciśnienie z instalacji wodociągowej) i płukanie do momentu, gdy woda wypływająca z otworu będzie czysta.

Przedmuchać dwukrotnie od dna otworu (użyć przedłużki dyszy, jeżeli to konieczne) przy użyciu bezolejowego sprężonego powietrza (min. 6 bar przy 6 m³/h) do momentu, gdy wylatujący strumień powietrza nie będzie zawierał widocznego pyłu i wody.

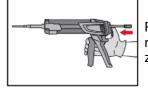
Przygotowanie iniekcji żywicy

Należy dokładnie zamocować mieszacz statyczny Hilti HIT-RE-M do końcówki ładunku foliowego. Nie wprowadzać żadnych zmian w mieszaczu. Przestrzegać instrukcji obsługi dozownika.


Sprawdzić, czy kaseta na ładunek foliowy działa prawidłowo. Wprowadzić ładunek foliowy do kasety oraz umieścić kasetę w dozowniku.


Ładunek foliowy otwiera się automatycznie po rozpoczęciu dozowania. W zależności od objętości ładunku foliowego należy odrzucić początkową porcję żywicy. Objętości, które należy odrzucić:

- 2 naciśnięcia spustu dozownika dla ładunku foliowego 330 ml,
- 3 naciśnięcia spustu dozownika dla ładunku foliowego 500 ml
- 4 naciśnięcia spustu dozownika dla ładunku foliowego 500 ml, ≤ 5 °C. Minimalna temperatura ładunku foliowego wynosi 0°C.


Dozowanie żywicy od dna otworu w sposób pozwalający uniknąć tworzenia się pęcherzyków powietrza (osadzanie przelotowe i nieprzelotowe).

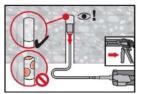
Należy dozować żywicę rozpoczynając od dna otworu, powoli wycofując mieszacz po każdym naciśnięciu spustu dozownika. Ilość zaprawy powinna być dobrana tak, aby wypełnić przestrzeń pierścieniową w otworze.

Iniekcja żywicy jest możliwa przy użyciu przedłużek oraz końcówek iniekcyjnych. Użyć mieszacza HIT-RE-M, przedłużek oraz końcówek iniekcyjnych o odpowiednim rozmiarze (patrz Tabela B5). Wprowadzić końcówkę iniekcyjną do dna otworu rozpocząć dozowanie żywicy. W trakcie iniekcji końcówka iniekcyjna będzie w naturalny sposób wypychana z otworu przez ciśnienie dozowanej żywicy. Ilość zaprawy powinna być dobrana tak, aby wypełnić przestrzeń pierścieniową w otworze.

Po zakończeniu iniekcji należy zwolnić nacisk tłoka dozownika poprzez naciśnięcie spustu dźwigni. Zapobiegnie to dalszemu wypływowi żywicy z mieszacza.

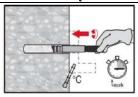
System iniekcyjny Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 oraz HIT-HY 200-R V3 z HAS-D

Zamierzone zastosowanie

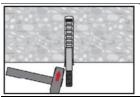

Instrukcja montażu

Załącznik B6

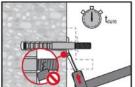
Strona 17 Europejskiej Oceny Technicznej ETA-18/0978 z 26 września 2024 r.


DIBt
Deutsches Institut für Bautechnik

Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti

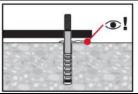


Dla montażu "nad głową" iniekcja żywicy jest możliwa wyłącznie przy użyciu przedłużek oraz końcówek iniekcyjnych. Użyć mieszacza HIT-RE-M, przedłużek oraz końcówek iniekcyjnych o odpowiednim rozmiarze (patrz Tabela B5). Wprowadzić końcówkę iniekcyjną do dna otworu rozpocząć dozowanie żywicy. W trakcie iniekcji końcówka iniekcyjna będzie w naturalny sposób wypychana z otworu przez ciśnienie dozowanej żywicy.

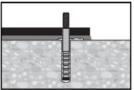

Osadzanie łącznika

Przed zastosowaniem należy upewnić się, że łącznik jest suchy i wolny od oleju lub innych zanieczyszczeń. Osadzić łącznik na wymaganą głębokość osadzenia przed upływem czasu roboczego twork (patrz Tabela B3 i B4).

Dla zastosowań "nad głową" należy zamocować osadzone elementy np. przy użyciu klinów.



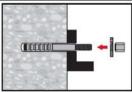
Po upływie wymaganego czasu utwardzania t_{cure} (patrz Tabela B3 i B4) należy usunąć nadmiar żywicy.


Osadzanie kotwy z odstępem między betonem a płytą podstawy (tylko jeżeli łącznik jest obciążony w kierunku osiowym)

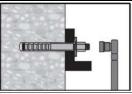
Osadzić łącznik na wymaganą głębokość osadzenia przed upływem czasu roboczego twork (patrz Tabela B3 i B4).

Należy sprawdzić, czy z otworu wypływa nadmiar żywicy. Nie trzeba wypełniać przestrzeni pierścieniowej w elemencie mocowanym.

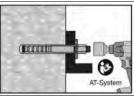
Po upływie wymaganego czasu utwardzania t_{cure} (patrz Tabela B3 i B4) należy wypełnić odstęp między betonem a płytą podstawy.


System iniekcyjny Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 oraz HIT-HY 200-R V3 z HAS-D	
Zamierzone zastosowanie Instrukcja montażu	Załącznik B7

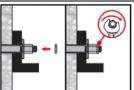
Strona 18 Europejskiej Oceny Technicznej ETA-18/0978 z 26 września 2024 r.


DIBt
Deutsches Institut für Bautechnik

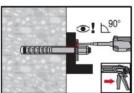
Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti


Montaż końcowy z użyciem podkładki iniekcyjnej

Skierować kulistą stronę nakrętki sześciokątnej w stronę podkładki iniekcyjnej i zamocować.



a) Klucz dynamometryczny
 Wymagany montażowy moment dokręcający podano w Tabeli B1.



b) Dokręcanie maszynowe

Wymagany montażowy moment dokręcający podano w Tabeli B2. Należy uważnie przeczytać instrukcję obsługi urządzenia dostarczoną przez producenta

Nałożyć nakrętkę kontrującą i dokręcić o ¼ do ½ obrotu.

Wypełnić całkowicie przestrzeń pierścieniową pomiędzy prętem kotwy a elementem mocowanym przy użyciu żywicy iniekcyjnej Hilti HIT-HY 200. Należy umieścić dyszę mieszacza statycznego prostopadle do wypełnianego otworu.

Przestrzegać instrukcji montażu dołączonej do ładunku foliowego HIT-HY 200.

Łącznik może być poddawany obciążeniu po upływie wymaganego czasu utwardzania t_{cure} (patrz Tabela B3 i B4).

System iniekcyjny Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 oraz HIT-HY 200-R V3 z HAS-D

Zamierzone zastosowanie

Instrukcja montażu

Załącznik B8

Strona 19 Europejskiej Oceny Technicznej ETA-18/0978 z 26 września 2024 r.

DIBt Deutsches Institut für Bautechnik

Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti

HAS-D				M12	M16	M20
Efektywna	głębokość osadzenia	h _{ef}	[mm]	100	125	170
Montażowy pezpieczeń	/ współczynnik istwa	γinst	[-]		1,0	
Zniszczen	ie stali					
Nośność charakterystyczna		N _{Rk,s}	[kN]		1)	
Zniszczen	ie przez wyciągnięcie ko	twy				
Nośność cl	narakterystyczna wiązania	w betor	nie niezarys	owanym C20)/25	
Zakres tem	peratury: 50 °C / 80 °C	$N_{Rk,p,ucr}$	[kN]	49,2	68,8	109
Nośność cł	narakterystyczna w betoni	e zaryso	wanym C20)/25		
Zakres tem	peratury: 50 °C / 80 °C	$N_{Rk,p,cr}$	[kN]	34,4	48,1	76,3
Współczynnik zwiększający dla N _{Rk,p} w betonie			C30/37		1,22	
		ψc	C40/50	1,41		
			C50/60		1,58	
Zniszczen	ie przez wyłamanie stożl	ka betor	าน			
Współczyn niezarysow	nik dla betonu vanego	k _{ucr,N}	[-]		11,0	
Współczyn zarysowan	nik dla betonu ego	k _{cr,N}	[-]		7,7	
Odległość (od krawędzi	Ccr,N	[mm]		1,5 · h _{ef}	
Rozstaw ko	otew	S _{cr,N}	[mm]		3,0 · h _{ef}	
Zniszczen	ie przez rozłupanie dla s	tandard	owej grubo	sci element	u betonowego	
Standardov oetonoweg	va grubość elementu o	h	[mm]	200	250	340
	Odległość od krawędzi	C _{cr,sp}	[mm]		1,5 · h _{ef}	
	Rozstaw kotew	SCr,sp	[mm]		2,0 · c _{cr,sp}	
	Nośność charakterystyczna w betonie niezarysowanym C20/25	$N^0_{Rk,sp}$	[kN]	40	50	109
	Odległość od krawędzi	C _{cr,sp}	[mm]	2,0	· h _{ef}	1,5 · h _e
	Rozstaw kotew	Scr,sp	[mm]		2,0 · c _{cr,sp}	
Przypadek 2	Nośność charakterystyczna w betonie niezarysowanym C20/25	N ⁰ Rk,sp	[kN]	49,2	68,8	109

System iniekcyjny Hilti HIT-HY 200 z HAS-D	
Właściwości użytkowe Zasadnicze charakterystyki w warunkach oddziaływania obciążeń statycznych	Załącznik C1
i quasi-statycznych w betonie	

Strona 20 Europejskiej Oceny Technicznej ETA-18/0978 z 26 września 2024 r.

DIBt
Deutsches Institut für Bautechnik

Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti

Tabela C	1 ciąg dalszy					
Zniszczer	nie przez rozłupanie dla n	ninimalne	j grubośc	ci elementu	betonowego	
Minimalna betonowe	grubość elementu go	h _{min}	[mm]	130	160	220
Odległość od krawędzi		C _{cr,sp}	[mm]	1,5 · h _{ef}		
	Rozstaw kotew	Scr,sp	[mm]	2,0 · c _{cr,sp}		
Przypadek 1 Nośność charakterystyczna w betonie niezarysowany C20/25	charakterystyczna w betonie niezarysowanym	N ⁰ Rk,sp	[kN]	30	40	75
	Odległość od krawędzi	C _{cr,sp}	[mm]	3,0	· h _{ef}	2,6 · h _{ef}
	Rozstaw kotew	Scr,sp	[mm]	2,0 · c _{cr,sp}		
Przypadek 2	Nośność charakterystyczna w betonie niezarysowanym C20/25	$N^0_{Rk,sp}$	[kN]	49,2	68,8	109

Nie oceniano właściwości użytkowych w tym zakresie na podstawie EAD 330250-00-0601.

Tabela C2: Zasadnicze charakterystyki przy statycznym i quasi-statycznym obciążeniu ścinającym w betonie

HAS-D			M12	M16	M20
Montażowy współczynnik bezpieczeństwa	γinst	[-]		1,0	•
Zniszczenie stali bez oddziaływa	nia momei	ntu zgina	jącego		
Nośność charakterystyczna	V^0 Rk,s	[kN]		1)	
Współczynnik ciągliwości	k ₇			1,0	
Zniszczenie stali z oddziaływanie	em momen	tu zginaj	ącego		
Nośność charakterystyczna	M^0 Rk,s	[Nm]		1)	
Zniszczenie przez podważenie bo	etonu	•			
Współczynnik dla podważenia	k ₈	[-]		2,0	
Zniszczenie krawędzi betonu		•			
Efektywna długość łącznika	If	[mm]	100	125	170
Efektywna średnica zewnętrzna łącznika	d _{nom}	[mm]	14	18	24
Współczynnik częściowy	γMc ²⁾	[-]		1,5	

Nie oceniano właściwości użytkowych w tym zakresie na podstawie EAD 330250-00-0601.

System iniekcyjny Hilti HIT-HY 200 z HAS-D	
Właściwości użytkowe	Załącznik C2
Zasadnicze charakterystyki w warunkach oddziaływania obciążeń statycznych	Zaiączink Oz
i quasi-statycznych w betonie	

²⁾ W przypadku braku przepisów krajowych.

Strona 21 Europejskiej Oceny Technicznej ETA-18/0978 z 26 września 2024 r.

DIBt
Deutsches Institut für Bautechnik

Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti

Tabela C3: Zasadnicze charakterystyki przy zmęczeniowym obciążeniu rozciagającym w betonie (metoda projektowa I zgodnie z TR 061)

	m w bet	onie (meto		a i zgodnie z Ti		
HAS-D			M12	M16	M20	
Zniszczenie stali						
Nośność charakterystyczna		[kN]		$\Delta N_{\text{Rk,s,0,n}}$ 1)		
		= 1	53,9	83,4	112,1	
		≤ 10 ³	48,3	78,8	92,7	
		≤ 3·10³	45,9	77,1	89,9	
		≤ 10 ⁴	41,4	73,1	83,4	
Liczba cykli	n	≤ 3·10 ⁴	35,9	66,3	73,8	
		≤ 10 ⁵	29,1	55,8	60,9	
		≤ 3·10 ⁵	24,2	45,5	50,7	
		≤ 10 ⁶	21,1	37,4	44,9	
		> 10 ⁶	20,1	34,0	43,5	
Współczynnik częściowy	γMs,N,fat	[-]	zgodr	nie z TR 061, rów	n. (3)	
Zniszczenie betonu		$\Delta N_{\text{Rk},(c/p/sp),0,n} = \eta_{\text{k,c,N,fat,n}} \cdot N_{\text{Rk},(c/p/sp)}^{2)}$				
Efektywna głębokość osadzenia	h _{ef}	[mm]	100	125	170	
Współczynnik redukcyjny	·	[-]		η _{k,c,N,fat,n}		
		= 1	1,0			
		≤ 10 ³	0,932			
		≤ 3·10³	0,893			
		≤ 10 ⁴		0,841		
Liczba cykli	n	≤ 3·10 ⁴		0,794		
		≤ 10 ⁵		0,75		
		≤ 3·10 ⁵	0,722			
		≤ 10 ⁶	0,704			
		> 10 ⁶		0,693		
Współczynnik częściowy	γMc,fat	[-]		1,5		
Współczynnik przeniesienia obciążenia dla grupy łączniko	ów ^{ΨFN}	[-]		0,79		

Uwzględniono zniszczenie w betonie zarysowanym w wyniku połączonego zniszczenia przez wyciągnięcie kotwy / wyłamanie stożka betonu ΔN_{Rk,p,0,n} w zakresie obciążenia o niskim cyklu.

System iniekcyjny Hilti HIT-HY 200 z HAS-D	
Właściwości użytkowe	Załącznik C3
Zasadnicze charakterystyki przy zmęczeniowym obciążeniu rozciągającym	
w betonie (metoda projektowa I zgodnie z TR 061)	

²⁾ N_{Rk,(c/p/sp)} zgodnie z Tabelą C1.

Strona 22 Europejskiej Oceny Technicznej ETA-18/0978 z 26 września 2024 r.

DIBt
Deutsches Institut für Bautechnik

Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti

Tabela C4: Zasadnicze charakterystyki przy zmęczeniowym obciążeniu ścinającym w betonie (metoda projektowa I zgodnie z TR 061)

HAS-D			M12	M16	M20
Zniszczenie stali		<u>'</u>			
Nośność charakterystyczna	·	[kN]		$\Delta V_{Rk,s,0,n}$	
		= 1	34,0	63,0	149,0
		≤ 10 ³	27,6	54,0	113,5
		≤ 3·10³	23,8	47,2	91,6
		≤ 10 ⁴	18,6	36,5	65,0
Liczba cykli	n	≤ 3·10 ⁴	14,1	26,2	43,9
		≤ 10 ⁵	10,5	18,4	29
		≤ 3·10 ⁵	8,9	15,6	23,2
		≤ 10 ⁶	8,2	15,0	21,3
		> 10 ⁶	8,2	15,0	21,1
Współczynnik częściowy	γMs,V,fat	[-]	zgodr	nie z TR 061, rów	n. (3)
Zniszczenie betonu			$\Delta V_{Rk,(c,cp)}$	$_{0),0,n}=\eta_{k,c,V,fat,n}\cdot V$	⁷ Rk,(c,cp) 1)
Efektywna długość łącznika	lf	[mm]	100	125	170
Efektywna średnica zewnętrzna łącznika	d_{nom}	[mm]	14	18	24
Współczynnik redukcyjny		[-]		ηk,c,V,fat,n	
		= 1		1,0	
		≤ 10 ³		0,799	
		≤ 3·10³		0,760	
		≤ 10 ⁴		0,725	
Liczba cykli	n	≤ 3·10 ⁴		0,700	
		≤ 10 ⁵		0,68	
		≤ 3·10 ⁵		0,668	
		≤ 10 ⁶		0,660	
		> 106		0,652	
Współczynnik częściowy	γMc,fat	[-]		1,5	
Współczynnik przeniesienia obciążenia dla grupy łącznikó	w ^{ΨFV}	[-]		0,81	

¹⁾ V_{Rk,(c,cp)} zgodnie z Tabelą C2

System iniekcyjny Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 oraz HIT-HY 200-R V3 z HAS-D	
Właściwości użytkowe	Załącznik C4
Zasadnicze charakterystyki przy zmęczeniowym obciążeniu ścinającym w	
betonie (metoda projektowa I zgodnie z TR 061)	

Strona 23 Europejskiej Oceny Technicznej ETA-18/0978 z 26 września 2024 r.

DIBt
Deutsches Institut für Bautechnik

Tłumaczenie na język angielski opracowane przez DIBt Tłumaczenie z języka angielskiego na język polski wykonano na zlecenie Hilti

Tabela C5: Zasadnicze charakterystyki przy zmęczeniowym obciążeniu rozciągającym w betonie (metoda projektowa II zgodnie z TR 061)

HAS-D			M12	M16	M20
Zniszczenie stali		•			
Nośność charakterystyczna	$\Delta N_{\text{Rk},s,0,\infty}$	[kN]	20,1	34,0	43,5
Współczynnik częściowy	γMs,N,fat	[-]		1,35	
Zniszczenie betonu	•	•	$\Delta N_{ m Rk,(c/p/s)}$	$_{\rm sp),0,\infty} = \eta_{\rm k,c,N,fat,\infty} \cdot N$	Rk,(c/p/sp) 1)
Efektywna głębokość osadzenia	h _{ef}	[mm]	100	125	170
Współczynnik redukcyjny	ηk,c,N,fat,∞	[-]		0,693	
Współczynnik częściowy	γMc,fat	[-]		1,5	
Współczynnik przeniesienia obciążenia dla grupy łącznikóv	v ΨFN	[-]		0,79	

¹⁾ N_{Rk,(c/p/sp)} zgodnie z Tabelą C1.

Tabela C6: Zasadnicze charakterystyki przy zmęczeniowym obciążeniu ścinającym w betonie (metoda projektowa II zgodnie z TR 061)

HAS-D			M12	M16	M20
Zniszczenie stali					
Nośność charakterystyczna	$\Delta V_{Rk,s,0,\infty}$	[kN]	8,2	15,0	21,1
Współczynnik częściowy	γMs,V,fat	[-]		1,35	
Zniszczenie betonu			$\Delta V_{Rk,(c,cp)}$	$\eta_{k,c,V,fat,\infty} \cdot V$	/ _{Rk,(c,cp)} 1)
Efektywna długość łącznika	lf	[mm]	100	125	170
Efektywna średnica zewnętrzna łącznika	d _{nom}	[mm]	14	18	24
Współczynnik redukcyjny	$\eta_{k,c,V,\text{fat},\infty}$	[-]		0,652	
Współczynnik częściowy	γMc,fat	[-]		1,5	
Współczynnik przeniesienia obciążenia dla grupy łączników	, ΨFV	[-]		0,81	

¹⁾ V_{Rk,(c,cp)} zgodnie z Tabelą C2.

Tabela C7: Zasadnicze charakterystyki przy połączonym obciążeniu zmęczeniowym w betonie (metoda projektowa I i II zgodnie z TR 061)

HAS-D			M12	M16	M20
Wykładnik dla kombinacji	α_{sn}	[-]		1,5	
obciążenia zmęczeniowego	α_{c}	[-]		1,5	

System iniekcyjny Hilti HIT-HY 200-A, HIT-HY 200-R, HIT-HY 200-A V3 oraz HIT-HY 200-R V3 z HAS-D	
Właściwości użytkowe	Załącznik C5
Zasadnicze charakterystyki przy obciążeniu zmęczeniowym rozciągającym,	1
ścinającym i połączonym w betonie (metoda projektowa I i II zgodnie z TR 061)	